World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

The Evolution of Mode-2 Nonlinear Internal Waves Over the Northern Heng-chun Ridge South of Taiwan : Volume 2, Issue 1 (18/02/2015)

By Ramp, S. R.

Click here to view

Book Id: WPLBN0004020135
Format Type: PDF Article :
File Size: Pages 54
Reproduction Date: 2015

Title: The Evolution of Mode-2 Nonlinear Internal Waves Over the Northern Heng-chun Ridge South of Taiwan : Volume 2, Issue 1 (18/02/2015)  
Author: Ramp, S. R.
Volume: Vol. 2, Issue 1
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Historic
Publication Date:
2015
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Reeder, D. B., Buijsman, M. C., Yang, Y. J., Bahr, F. L., & Ramp, S. R. (2015). The Evolution of Mode-2 Nonlinear Internal Waves Over the Northern Heng-chun Ridge South of Taiwan : Volume 2, Issue 1 (18/02/2015). Retrieved from http://www.netlibrary.net/


Description
Description: Soliton Ocean Services, Inc., Carmel Valley, CA 93924, USA. Two research cruises were conducted from the R/V OCEAN RESEARCHER 3 during 5–16 August 2011 to study the generation of high-frequency nonlinear internal waves (NLIW) over the northern Heng-Chun Ridge south of Taiwan. The primary study site, centered near 21°34' N, 120°54' E, was on top of a smaller ridge about 15 km wide by 400 m high atop the primary ridge, with a sill depth of approximately 600 m. The bottom slope was steep over both sides of the ridge, supercritical with respect to both diurnal and semidiurnal tides. The key result of the experiments is that a profusion of mode-2 NLIW were observed by all the sensors. Some of the waves were solitary while others had as many as seven evenly-spaced waves per packet. The waves all exhibited classic mode-2 velocity structure with a core near 150–200 m and opposing velocities in the layers above and below. At least two and possibly three most common propagation directions emerged from the analysis, suggesting multiple generation sites near the east side of the ridge. The turbulent dissipation due to overturns in the wave cores was very high at order 10−4–10−3 W kg−1. The energy budget suggests that the waves cannot persist very far from the ridge and likely do not contribute to the South China Sea transbasin wave phenomenon.

Summary
The evolution of Mode-2 nonlinear internal waves over the northern Heng-Chun ridge south of Taiwan

Excerpt
Alford, M. H., Lien, R.-C., Simmons, H., Klymak, J., Ramp, S. R., Yang, Y.-J., Tang, T.-Y., Farmer, D., and Chang, M.-H.: Speed and evolution of nonlinear internal waves transiting the South China Sea, J. Phys. Oceanogr., 40, 1338–1355, 2010.; Alford, M. H., MacKinnon, J. A., Nash, J. D., Simmons, H., Pickering, A., Klymak, J. M., Pinkel, R., Sun, O., Rainville, L., Musgrave, R., Beitzel, T., Fu, K.-H., and Lu, C.-W.: Energy flux and Dissipation in Luzon Strait: two tales of two ridges, J. Phys. Oceanogr., 41, 2211–2222, 2011.; Apel, J. R., Holbrook, J. R., Tsai, J., and Liu, A. K.: The Sulu Sea internal soliton experiment, J. Phys. Oceanogr., 15, 1625–1651, 1985.; Buijsman, M. C., Kanarska, Y., and McWilliams, J. C.: On the generation and evolution of nonlinear internal waves in the South China Sea, J. Geophys. Res.-Oceans, 115, C02012, doi:10.1029/2009JC005275, 2010a.; Buijsman, M. C., McWilliams, J. C., and Jackson, C. R.: East–west asymmetry in nonlinear internal waves from Luzon Strait, J. Geophys. Res.-Oceans, 115, C1057, doi:10.1029/2009JC006004, 2010b.; Buijsman, M. C., Legg, S., and Klymak, J.: Double-ridge internal tide interference and its effect on dissipation in Luzon Strait, J. Phys. Oceanogr., 42, 1337–1356, 2012.; Buijsman, M. C., Klymak, J. M., Legg, S., Alford, M. H., Farmer, D., MacKinnon, J. A., Nash, J. D., Park, J. H., Pickering, A., Simmons, H.: Three dimensional double ridge internal tide resonance in Luzon Strait, J. Phys. Oceanogr., 44, 850–869, 2014.; Dillon, T. M.: Vertical overturns: a comparison of Thorpe and Ozmidov length scales, J. Geophys. Res., 87, 9601–9613, 1982.; Duda, T. F., Lynch, J. F., Irish, J. D., Beardsley, R. C., Ramp, S. R., Chiu, C.-S., Tang, T.-Y., and Yang, Y.-J.: Internal tide and nonlinear internal wave behavior at the continental slope in the northern South China Sea, IEEE J. Oceanic Eng., 29, 1105–1131, 2004.; Lamb, K. G. and Nguyen, V. T.: Calculating energy flux in internal solitary waves with an application to reflectance, J. Phys. Oceanogr., 39, 559–580, 2009.; Duda, T. F., Newhall, A. E., Gawarkiewicz, G., Caruso, M. J., Graber, H. C., Yang, Y. J., and Jan, S.: Significant internal waves and internal tides measured northeast of Taiwan, J. Mar. Res., 71, 47–81, 2013.; Egbert, G. and Erofeeva, S.: Efficient inverse modeling of barotropic ocean tides, J. Atmos. Ocean. Tech., 19, 183–204, 2002.; Egbert, G., Bennett, A., and Foreman, M.: TOPEX/Poseidon tides estimated using a global inverse model, J. Geophys. Res., 99, 24821–24852, 1994.; Farmer, D. M. and Smith, J. D.: Tidal interaction of stratified flow with a sill in Knight Inlet, Deep-Sea Res., 27, 239–254, 1980.; Farmer, D., Li, Q., and Park, J.-H.: Internal wave observations in the South China Sea: the role of rotation and non-linearity, Atmos. Ocean, 47, 267–280, 2009.; Garrett, C. and Kunze, E.: Internal tide generation in the deep ocean, Annu. Rev. Fluid Mech., 39, 57–87, 2007.; Jan, S., Lien, R.-C., and Ting, C.-H.: Numerical study of baroclinic tides in Luzon Strait, J. Oceanogr., 64, 789–802, 2008.; Klymak, J. M., Pinkel, R., Liu, C.-T., Liu, A. K., and David, L.: Prototypical solitons in the South China Sea, Geophys. Res. Lett., 33, L11607, doi:10.1029/2006GL025932, 2006.; Klymak, J. M., Legg, S., and Pinkel, R.: A simple parameterization of turbulent tidal mixing near supercritical topography, J. Phys. Oceanogr., 40, 2059–2074, doi:10.1175/2010JPO4396.1, 2010.; Klymak, J. M., Alford, M. H., Pinkel, R., Lien, R. C., and Yang, Y. J.: The breaking and scattering of the internal tide on a continental slope, J. Phys. Oceanogr., 41, 926–945, 2011.; Pinkel, R., Buijsman, M., and Klymak, J. M.: Breaking topographic lee waves in a tidal channel in Luzon Strait, Oceanog

 

Click To View

Additional Books


  • Scaling of Peak Flows with Constant Flow... (by )
  • Nonlinear Viscoelastic Compaction in Sed... (by )
  • Detecting Spatial Patterns with the Cumu... (by )
  • Multiscaling of Porous Soils as Heteroge... (by )
  • Finding Recurrence Networks' Threshold A... (by )
  • The L1/2 Law and Multifractal Topography... (by )
  • Numerical Simulations of the Charging of... (by )
  • Optimal Solution Error Covariance in Hig... (by )
  • Monte Carlo Fixed-lag Smoothing in State... (by )
  • Transformation of Frequency-magnitude Re... (by )
  • Stability of the Strahl Electron Distrib... (by )
  • Unified Multifractal Atmospheric Dynamic... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.