World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Cluster Survey of the Mid-altitude Cusp: 1. Size, Location, and Dynamics : Volume 24, Issue 11 (22/11/2006)

By Pitout, F.

Click here to view

Book Id: WPLBN0004001381
Format Type: PDF Article :
File Size: Pages 16
Reproduction Date: 2015

Title: Cluster Survey of the Mid-altitude Cusp: 1. Size, Location, and Dynamics : Volume 24, Issue 11 (22/11/2006)  
Author: Pitout, F.
Volume: Vol. 24, Issue 11
Language: English
Subject: Science, Annales, Geophysicae
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Escoubet, C. P., Klecker, B., Rème, H., & Pitout, F. (2006). Cluster Survey of the Mid-altitude Cusp: 1. Size, Location, and Dynamics : Volume 24, Issue 11 (22/11/2006). Retrieved from

Description: Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße, 85741 Garching, Germany. We present a statistical study of four years of Cluster crossings of the mid-altitude cusp. In this first part of the study, we start by introducing the method we have used a) to define the cusp properties, b) to sort the interplanetary magnetic field (IMF) conditions or behaviors into classes, c) to determine the proper time delay between the solar wind monitors and Cluster. Out of the 920 passes that we have analyzed, only 261 fulfill our criteria and are considered as cusp crossings. We look at the size, location and dynamics of the mid-altitude cusp under various IMF orientations and solar wind conditions. For southward IMF, Bz rules the latitudinal dynamics, whereas By governs the zonal dynamics, confirming previous works. We show that when |By| is larger than |Bz|, the cusp widens and its location decorrelates from By. We interpret this feature in terms of component reconnection occurring under By-dominated IMF. For northward IMF, we demonstrate that the location of the cusp depends primarily upon the solar wind dynamic pressure and upon the Y-component of the IMF. Also, the multipoint capability of Cluster allows us to conclude that the cusp needs typically more than ~20 min to fully adjust its location and size in response to changes in external conditions, and its speed is correlated to variations in the amplitude of IMF-Bz. Indeed, the velocity in °ILAT/min of the cusp appears to be proportional to the variation in Bz in nT: Vcusp=0.024 ΔBz. Finally, we observe differences in the behavior of the cusp in the two hemispheres. Those differences suggest that the cusp moves and widens more freely in the summer hemisphere.

Cluster survey of the mid-altitude cusp: 1. size, location, and dynamics

Balogh, A., Carr, C. M., AcuÑa, M. H., Dunlop, M. W., Beek, T. J., Brown, P., Fornacon, K.-H., Georgescu, E., Glassmeier, K.-H., Harris, J., Musmann, G., Oddy, T., and Schwingenschuh, K.: The Cluster Magnetic Field Investigation: overview of in-flight performance and initial results, Ann. Geophys., 19, 1207–1217, 2001.; Bobra, M. G., Petrinec, S. M., Fuselier, S. A., Claflin, E. S., and Spence, H. E.: On the solar wind control of the cusp aurora during northward IMF, Geophys. Res. Lett., 31, L04805, doi:10.1029/2003GL018417, 2004.; Crooker, N. U.: Dayside merging and cusp geometry, J. Geophys. Res., 83, 951–959, 1979.; Burch, J. L.: Rate of erosion of dayside magnetic flux based on a quantitative study of polar cusp latitude on the interplanetary magnetic field, Radio Sci., 8, 955, 1973.; Chen,~J., Fritz, T A., and Sheldon, R. B.: Comparison of energetic ions in cusp and outer radiation belt, J. Geophys. Res., 110, A12219, doi:10.1029/2004JA010718, 2005.; Crooker, N. U., Toffoletto, F. R., and Gussenhoven, M. S.: Opening the cusp, J. Geophys. Res., 96, 3497–3503, 1991.; Eather, R. H.: Polar cusp dynamics, J. Geophys. Res., 90, 1569–1576, 1985.; Escoubet, C. P. and Bosqued, J. M.: The influence of IMF-Bz and/or AE on the polar cusp: an overview of observations from the Aureol-3 satellite, Planet. Space Sci., 37, 609–626, 1989.; Escoubet, C. P., Fehringer, M., and Goldstein, M.: The Cluster mission, Ann. Geophys., 19, 1197–1200, 2001; Escoubet, C. P., Bosqued, J. M., Berchem, J., Trattner, K.-H., Taylor, M. G. G. T., Pitout, F., Laakso, H., Masson, A., Dunlop, M., Rème, H., Dandouras, I., and Fazakerley, A.: Temporal evolution of a staircase ion signature observed by Cluster in the mid-altitude polar cusp, Geophys. Res. Lett., 33, L07108, doi:10.1029/2005GL025598, 2006.; Formisano, V. and Bavassano-Cattaneo, M. B.: Plasma properties in the dayside cusp region, Planet. Space Sci., 26, 993–1006, 1978.; Gonzales, W. D. and Moser, F. S.: A quantitative model for the potential resulting from magnetic reconnection with an arbitrary interplanetary magnetic field, J. Geophys. Res., 79, 4186–4194, 1974.; Laakso,~H., Pfaff,~R., and Janhunen,~P.: Polar observations of electron density distribution in the Earth's magnetosphere. 1. Statistical results, Ann. Geophys., 20, 1711–1724, 2002.; Lavraud, B., Dunlop, M. W., Phan, T. D., Rème, H., Bosqued, J.-M., Dandouras, I., Sauvaud, J.-A., Lundin, R., Taylor, M. G. G. T., Cargill, P. J., Mazelle, C., Escoubet, C. P., Carlson, C. W., McFadden, J. P., Parks, G. K., Moebius, E., Kistler, L. M., Bovassano-Cattaneo, M.-B., Korth, A., Klecker, B., and Balogh, A.: Cluster Observations of the exterior cusp and its surrounding boundaries under northward IMF, Geophys. Res. Lett., 29, 56-1, doi:10.1029/2002GL015464, 2002.; Lavraud,~B., Fedorov,~A., Budnik,~E., Grigoriev,~A., Cargill,~P., Dunlop,~M., Rème,~H., Dandouras,~I., and Balogh,~A.: Cluster survey of the high-altitude cusp properties: a three-year statistical study, Ann. Geophys., 22, 3009–3019, 2004.; Lockwood, M. and Smith, M. F.: Low and middle altitude cusp particle signatures for general magnetopause reconnection rate variations. 1: Theory, J. Geophys. Res., 99, 8531–8553, 1994.; Lockwood, M., Lanchaster, B. S., Frey, H. U., Throp, K., Morley, S. K., Milan, S. E., and Lester, M.: IMF control of cusp proton emission intensity and dayside convection: implications for component and anti-parallel reconnection, Ann. Geophys., 21, 955–982, 2003.; Lundin, R., Aparicio, B., and Yamauchi, M.: On the solar wind flow control of the polar cusp, J. Geophys. Res., 106, 13 023–13 036, 2001.; McCrea, I. W., Lockwood, M., Moen, J., Pitout, F., Eglitis, P., Aylward, A. D., Cerisier, J.-C., Thorolfssson, A., and Milan, S. E.: ESR and EISCAT observations of the response of the cusp and cleft to IMF orientation changes, Ann. G


Click To View

Additional Books

  • Relation Between Substorm Characteristic... (by )
  • The Influence of Imf by on the Nature of... (by )
  • Observations and Modelling of the Wave M... (by )
  • Comparison of the Observed Dependence of... (by )
  • Spatial Dependence of Magnetopause Energ... (by )
  • Diagnostic of the Temperature and Differ... (by )
  • Mass Analysis of Charged Aerosol Particl... (by )
  • Advanced Intermittent Clutter Filtering ... (by )
  • Simulation Study of the Large-scale Modi... (by )
  • Erosion of the Inner Magnetosphere Durin... (by )
  • Field-aligned Chorus Wave Spectral Power... (by )
  • Turbulence Characteristics Inside Ionosp... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.