World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Four-dimensional Energy Spectrum for Space–time Structure of Plasma Turbulence : Volume 21, Issue 1 (09/01/2014)

By Narita, Y.

Click here to view

Book Id: WPLBN0003992188
Format Type: PDF Article :
File Size: Pages 7
Reproduction Date: 2015

Title: Four-dimensional Energy Spectrum for Space–time Structure of Plasma Turbulence : Volume 21, Issue 1 (09/01/2014)  
Author: Narita, Y.
Volume: Vol. 21, Issue 1
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2014
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Narita, Y. (2014). Four-dimensional Energy Spectrum for Space–time Structure of Plasma Turbulence : Volume 21, Issue 1 (09/01/2014). Retrieved from http://www.netlibrary.net/


Description
Description: Space Research Institute, Austrian Academy of Sciences, Schmiedlstr. 6, 8042 Graz, Austria. A parametric model of the inertial-range energy spectrum is constructed for plasma turbulence in the four-dimensional wave vector and frequency domain. The model is based on that of the Eulerian wavenumber-frequency spectrum developed for describing fluid turbulence, and includes wave vector anisotropies in the three-dimensional wave vector domain by approximating the spectrum to a set of ellipses. The shape of the four-dimensional spectrum is determined by the Doppler shift, the Doppler broadening, and anisotropy coefficients. The model is applied to the magnetic energy spectrum in the near-Earth solar wind measured by four Cluster spacecraft, and the set of the spectral parameters are determined observationally. In this way, space–time structure of plasma turbulence can be condensed into a small number of parameters, which is suitable for evaluating the energy spectra in observational and numerical studies on the quantitative basis.

Summary
Four-dimensional energy spectrum for space–time structure of plasma turbulence

Excerpt
Balbus, S. A.: Enhanced angular momentum transport in accretion disks, Ann. Rev. Astron. Astrophys. 41, 555–597, doi:10.1146/annurev.astro.41.081401.155207, 2003.; Balogh, A., Carr, C. M., Acuña, M. H., Dunlop, M. W., Beek, T. J., Brown, P., Fornaçon, K.-H., Georgescu, E., Glassmeier, K.-H., Harris, J., Musmann, G., Oddy, T., and Schwingenschuh, K.: % The Cluster magnetic field investigation: overview of in-flight performance and initial results, Ann. Geophys., 19, 1207–1217, doi:10.5194/angeo-19-1207-2001, 2001.; Bieber, J. W., Wannger, W., and Matthaeus, W. H.: Dominant two-dimensional solar wind turbulence with implications for cosmic ray transport, J. Geophys. Res., 101, 2511–2522, doi:10.1029/95JA02588, 1996.; Bruno, R. and Carbone, V.: The solar wind as a turbulence laboratory, Living Rev. Solar Phys., 10, 2, doi:10.12942/lrsp-2013-2, 2013.; Camporeale, E. and Burgess, D.: The dissipation of solar wind turbulent fluctuations at electron scales, Astrophys. J., 730, 114, doi:10.1088/0004-637X/730/2/114, 2011 (Correction, 735, 67, doi:10.1088/0004-637X/735/1/67, 2011).; Carbone, F., Sorriso-Valvo, L., Versace, C., Strangi, G., and Bartolino, R.: Anisotropy of spatiotemporal decorrelation in electrohydrodynamic turbulence, Phys. Rev. Lett., 106, 114502, doi:10.1103/PhysRevLett.106.114502, 2011.; Chang, O., Gary, S. P., and Wang, J.: Whistler turbulence at variable electron beta: Three-dimensional particle-in-cell simulations, J. Geophys. Res., Space Phys., 118, 2824–2833, doi:10.1002/jgra.50365, 2013.; Chen, C. H. K., Mallet, A., Schekochihin, A. A., Horbury, T. S., Wicks, R. T., and Bale, S. D.: Three-dimensional structure of solar wind turbulence, Astrophys. J., 758, 120, doi:10.1088/0004-637X/758/2/120, 2012.; Comişel, H., Verscharen, D., Narita, Y., and Motschmann, U.: Spectral evolution of two-dimensional kinetic plasma turbulence in the wavenumber-frequency domain, Phys. Plasmas, 20, 090701, doi:10.1063/1.4820936, 2013.; Elmegreen, B. G. and Scalo, J.: Interstellar turbulence I: Observations and processes, Ann. Rev. Astron. Astrophys., 42, 211–273, doi:10.1146/annurev.astro.41.011802.094859, 2004.; Escoubet, C. P., Fehringer, M., and Goldstein, M.: The Cluster mission, Ann. Geophys., 19, 1197–1200, doi:10.5194/angeo-19-1197-2001, 2001.; Gary, S. P., Chang, O., and Wang, J.: Forward cascade of whistler turbulence: Three-dimensional particle-in-cell simulations, Astrophys. J., 755, 142, doi:10.1088/0004-637X/755/2/142, 2012.; He, G.-W. and Zhang, J.-B.: Elliptic model for space-time correlation in turbulent shear flows, Phys. Rev. E, 73, 055303R, doi:10.1103/PhysRevE.73.055303, 2006.; Howes, G. G., Tenbarge, J. M., Dorland, W., Quataert, E., Schekochihin, A. A., Numata, R., and Tatsuno, T.: Gyrokinetic simulations of solar wind turbulence from ion to electron scales, Phys. Rev. Lett., 107, 035004, doi:10.1103/PhysRevLett.107.035004, 2011.; Kolmogorov, A. N.: The local structure of turbulence in incompr

 

Click To View

Additional Books


  • Linear and Nonlinear Post-processing of ... (by )
  • The Quasi-static Approximation of the Sp... (by )
  • Distinguishing the Effects of Internal a... (by )
  • A Non-linear and Stochastic Response Sur... (by )
  • Transformation of Frequency-magnitude Re... (by )
  • Stability and Nonlinear Regimes of Flow ... (by )
  • Spatial Analysis of Oil Reservoirs Using... (by )
  • Scaling Property of Ideal Granitic Seque... (by )
  • Detecting Nonlinearity in Time Series Dr... (by )
  • Phase Space Vortices in Collisionless Pl... (by )
  • Stochastic Resonance: from Climate to Bi... (by )
  • Frustration and Disorder in Granular Med... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.