World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Nonlinear Chaotic Model for Predicting Storm Surges : Volume 17, Issue 5 (06/09/2010)

By Siek, M.

Click here to view

Book Id: WPLBN0003984358
Format Type: PDF Article :
File Size: Pages 16
Reproduction Date: 2015

Title: Nonlinear Chaotic Model for Predicting Storm Surges : Volume 17, Issue 5 (06/09/2010)  
Author: Siek, M.
Volume: Vol. 17, Issue 5
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Siek, M., & Solomatine, D. P. (2010). Nonlinear Chaotic Model for Predicting Storm Surges : Volume 17, Issue 5 (06/09/2010). Retrieved from

Description: Department of Hydroinformatics and Knowledge Management, UNESCO-IHE Institute for Water Education, Delft, The Netherlands. This paper addresses the use of the methods of nonlinear dynamics and chaos theory for building a predictive chaotic model from time series. The chaotic model predictions are made by the adaptive local models based on the dynamical neighbors found in the reconstructed phase space of the observables. We implemented the univariate and multivariate chaotic models with direct and multi-steps prediction techniques and optimized these models using an exhaustive search method. The built models were tested for predicting storm surge dynamics for different stormy conditions in the North Sea, and are compared to neural network models. The results show that the chaotic models can generally provide reliable and accurate short-term storm surge predictions.

Nonlinear chaotic model for predicting storm surges

Alexandersson, H., Schmith, T., Iden, K., and Tuomenvirta, H.: Long-term variations of the storm climate over NW Europe, Global Atmos. Ocean System, 6, 97–120, 1998.; Battjes, J. A. and Gerritsen, H.: Coastal modelling for flood defence, Philos. Transact. A Math. Phys. Eng. Sci., 360(1796), 1461–1475, 2002.; Bode, L. and Hardy, T. A.: Progress and recent developments in storm surge modeling, J. Hydraul. Eng.-ASCE, 123(4), 315–331, 1997.; Box, G., Jenkins, G., and Reinsel, G.: Time series analysis: forecasting and control, Prentice Hall, NJ, USA, 1994.; Butler, A., Heffernan, J. E., Tawn, J. A., Flather, R. A., and Horsburgh, K. J.: Extreme value analysis of decadal variations in storm surge elevations, J. Marine Syst., 67(1�-2), 189�-200, 2007.; Cao, L.: Practical method for determining the minimum embedding dimension of a scalar time series, Physica D, 110(1–2), 43–50, 1997.; Casdagli, M.: Nonlinear prediction of chaotic time series, Physica D, 35(3), 335–356, 1989.; Donner, R. V. and Barbosa, S. M.: Nonlinear time series analysis in the geosciences, in: Lecture Notes in Earth Sciences, vol. 112, Berlin Springer Verlag, 2008.; Dronkers, J. J.: Tidal computations in rivers and coastal waters, North Holland Publishing Company, Amsterdam, 1964.; Farmer, J. D. and Sidorowich, J. J.: Predicting chaotic time series, Phys. Rev. Lett., 59(8), 845–848, 1987.; Fermi E., Pasta J., and Ulam S.: Studies of nonlinear problems, I. Los Alamos Report, LA-1940, 1955.; Fraser, A. M. and Swinney, H. L.: Independent coordinates for strange attractors from mutual information, Phys. Rev. A, 33(2), 1134–1140, 1986.; Frison, T. W., Abarbanel, H. D. I., Earle, M. D., Schultz, J. R., and Scherer, W. D.: Chaos and predictability in ocean water levels, J. Geophys. Res., 104(C4), 7935�-7951, doi:10.1029/1998JC900104, 1999.; Gonnert, G., Dube, S. K., Murty, T., and Siefert, W.: Global storm surges: theory, observations and applications, Die Kuste, 63, 1–623, 2001.; Grassberger, P. and Procaccia, I.: Measuring the strangeness of strange attractors, Physica D, 9(1–2), 189–208, 1983.; Haykin, S.: Neural networks: a comprehensive foundation, Prentice Hall, 2008.; Hegger, R., Kantz, H., and Schreiber, T.: Practical implementation of nonlinear time series methods: The TISEAN package, Chaos: An Interdisciplinary Journal of Nonlinear Science, 9(2), 413–435, 1999.; Kaplan, J. L. and Yorke, J. A.: Chaotic behavior of multidimensional difference equations, Lect. Notes Math., 730, 204–227, 1979.; Kennel, M. B., Brown, R., and Abarbanel, H. D. I.: Determining embedding dimension for phase-space reconstruction using a geometrical construction, Phys. Rev. A, 45(6), 3403, doi:10.1103/PhysRevA.45.3403, 1992.; Korteweg D. J. and de Vries G.: On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves, Philosophical Magazine 5th Series, 36, 422–443, 1895.; Kugiumtzis, D., Lingjaerde, O. C., and Christophersen, N.: Regularized local linear prediction of chaotic time series, Physica D, 112(3–4), 344–360, 1998.; Li, Y. C.: Chaos in partial differential equations, International Press, Somerville, MA, USA, 2004.; Lorenz, E. N.: Deterministic nonperiodic flow, J. Atmos. Sci., 20(2), 130–141, 1963.; Marwan, N., Romano, M., Thiel, M., and Kurths, J.: Recurrence plots for the analysis of complex systems, Phys. Rep., 438(5–6), 237–329, 2007.; Prandle, D., Wolf, J., and Jacques, C. J. N.: Surge-tide interaction in the Southern North Sea, Elsevier Oceanography Series, Elsevier, 23, 161–185, 1978.; Rössler, O. E.: An equation for hyperchaos, Phys. Lett., 71A(2,3), 155–157, 1979.; Ruelle, D.: Deterministic chaos: the science and the fiction, P. Roy. Soc. Lond. A, 427, 241–248, 1990.; Sano, M. and Sawada, Y.: Measurement of the Lyapunov spectrum from a chaotic time series, Phys. Rev. Lett., 55(10), 1082–1085, 1985.; Schreiber, T.: Interdisciplinary application of nonlinear time series


Click To View

Additional Books

  • Intermittent Chaos Driven by Nonlinear A... (by )
  • Complexity Signatures in the Geomagnetic... (by )
  • Do Climate Simulations from Models Force... (by )
  • Particle Acceleration in Tangential Disc... (by )
  • Spectral Diagonal Ensemble Kalman Filter... (by )
  • Synchronization and Chaos Control in a P... (by )
  • Chaos in Magnetoplasmas : Volume 6, Issu... (by )
  • Exact Theory for Localized Envelope Modu... (by )
  • Brief Communication: 2-d Numerical Model... (by )
  • Model Error in Weather Forecasting : Vol... (by )
  • Steep Unidirectional Wave Groups – Fully... (by )
  • Unstable Periodic Motion in Turbulent Fl... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.