World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Non-diffusive, Non-local Transport in Fluids and Plasmas : Volume 17, Issue 6 (20/12/2010)

By Del-castillo-negrete, D.

Click here to view

Book Id: WPLBN0003984053
Format Type: PDF Article :
File Size: Pages 13
Reproduction Date: 2015

Title: Non-diffusive, Non-local Transport in Fluids and Plasmas : Volume 17, Issue 6 (20/12/2010)  
Author: Del-castillo-negrete, D.
Volume: Vol. 17, Issue 6
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Del-Castillo-Negrete, D. (2010). Non-diffusive, Non-local Transport in Fluids and Plasmas : Volume 17, Issue 6 (20/12/2010). Retrieved from

Description: Oak Ridge National Laboratory, Oak Ridge, TN, USA. A review of non-diffusive transport in fluids and plasmas is presented. In the fluid context, non-diffusive chaotic transport by Rossby waves in zonal flows is studied following a Lagrangian approach. In the plasma physics context the problem of interest is test particle transport in pressure-gradient-driven plasma turbulence. In both systems the probability density function (PDF) of particle displacements is strongly non-Gaussian and the statistical moments exhibit super-diffusive anomalous scaling. Fractional diffusion models are proposed and tested in the quantitative description of the non-diffusive Lagrangian statistics of the fluid and plasma problems. Also, fractional diffusion operators are used to construct non-local transport models exhibiting up-hill transport, multivalued flux-gradient relations, fast pulse propagation phenomena, and tunneling of perturbations across transport barriers.

Non-diffusive, non-local transport in fluids and plasmas

Bouchaud, J. P. and Georges, A.: , Phys. Rep., 195, p. 127, doi:10.1016/0370-1573(90)90099-N, 1990.; Callen, J. D. and Kissick, M. W.: , Plasma Phys. Contr. F., 39, B173, doi:10.1088/0741-3335/39/12B/014, 1997.; Carreras, B. A., Garcia, L., and Diamond, P. H.: , Phys. Fluids, 30, 1388, doi:10.1063/1.866518, 1987.; Cartea, A. and del-Castillo-Negrete, D.: , Phys. Rev. E, 76, 041105, doi:10.1103/PhysRevE.76.041105, 2007.; del-Castillo-Negrete, D.: , Phys. Fluids, 10, p. 576, 1998. \bibitem[del-Castillo-Negrete (2000)] del_castillo_2000 del-Castillo-Negrete, D.: , Phys. Plasmas, 7, 1702, doi:10.1063/1.873988, 2000. \bibitem[del-Castillo-Negrete et al.(2004)] del_castillo_2004 del-Castillo-Negrete, D., Carreras, B. A., and Lynch, V. E.: , Phys. Plasmas, 11, 3854, doi:10.1063/1.1767097, 2004.; del-Castillo-Negrete, D.: , Phys. Plasmas, 13, 082308, doi:10.1063/1.2336114, 2006.; del-Castillo-Negrete, D. and Morrison, P. J.: , Phys. Fluids A, 5, 948, doi:10.1063/1.858639, 1993.; del-Castillo-Negrete, D., Carreras, B. A., and Lynch, V. E.: , Phys. Rev. Lett., 94, 065003, doi:10.1103/PhysRevLett.94.065003, 2005.; del-Castillo-Negrete, D., Mantica, P., Naulin, V., and Rasmussen, J.: , Nucl. Fusion, 48, 075009, doi:10.1088/0029-5515/48/7/075009, 2008.; Gustafson, K., del-Castillo-Negrete, D., and Dorland, W.: , Phys. Plasmas, 15, p. 102309, doi:10.1063/1.3003072, 2008.; Haller, G. and Yuan, G.: Physica D, 147, 352–370, 2000.; Held, E. D., Callen, J. D., Hegna, C. C., and Sovinec, C. R.: , Phys. Plasmas, 8, 1171, doi:10.1063/1.1349876, 2001.; Horton, W. and Hasegawa, A.: , Chaos, 4, 227 (1990).; Horton, W. and Ichikawa, Y. H.: Chaos and structures in nonlinear plasmas, World Scientific Publishing, 1996.; Mainardi, F., Luchko, Y., and Pagnini, G.: , Fractional Calculus and Applied Analysis, 4, 153–192, 2001.; Mathur, M., Haller, G., Peacock, T., Ruppert-Felsot, J. E., and Swinney, H. L.: Phys. Rev. Lett. 98, 144502, doi:10.1103/PhysRevLett.98.144502,2007.; Metzler, R. and Klafter, J.: , Phys. Rep., 339, 1–77, 2000.; Montroll, E. W. and Weiss, G. H.: , J. Math. Phys., 6, p. 167, (1965).; Montroll, E. W. and Shlesinger, M. F.: , in: Nonequilibrium Phenomena, II. From Stochastics to Hydrodynamics, edited by: Lebowitz, J. L. and Montroll, E. W., Elsevier Science Publishers BV, 1984. \bibitem[Nicholson(1983)] nicholson Nicholson, D.: Introduction to Plasma Theory, Wiley, 1983.; Padberg et al.: New J. Phys., 9, 400 pp., 2007.; Paul, W. and Baschnagel, J.: Stochastic Processes: From Physics to Finance, Springer Berlin Heidelberg, 1999.; Perri, S. and Zimbardo, G.: Evidence of Superdiffusive Transport of Electrons Accelerated at Interplanetary Shocks, Astrophys. J. Lett., 671, L177, doi:10.1086/525523, 2007.; Perri, S. and Zimbardo, G.: Ion Superdiffusion at the Solar Wind Termination Shock, Astrophys. J. Lett., 693, L118, doi:10.1088/0004-637X/693/2/L118, 2009. \bibitem[Ottino(1989)] otino Ottino, J. M.: The kinematics of mixing- stretching, chaos, and transport, Cambridge University Press, 1989. \bibitem[Pedlosky(1987)] pedlosky Pedlosky, J.: Geophysical fluid dynamics, 2nd edn., Springer-Verlag, New York, 1987.; Petviashvili, V. I. and Pokhotelov, O. A.: Solitary Waves in Plasmas and in the Atmosphere, Gordon and Breach, PA, 1992.; Podlubny, I.: Fractional Differential Equations, Academic Press, San Diego, 1999.; Saichev, A. and Zaslavsky, G. M.: , Chaos, 7(4), 753 pp., 1997.; Samko, S. G., Kilbas, A. A., and Marichev, O. I.: Fractional Integrals and Derivatives, Gordon and Breach Science Publishers, Amsterdam, 1993.; Sanchez, R., Carreras, B. A., Newman, D. E., Lynch, V. E., and van Milligen, B.&nbs


Click To View

Additional Books

  • Time Scale of the Largest Imaginable Mag... (by )
  • Non-gaussian Statistics in Space Plasma ... (by )
  • Preface : Volume 9, Issue 5/6 (30/11/-00... 
  • Multiscale Characterization of Pore Spac... (by )
  • Joint State and Parameter Estimation wit... (by )
  • Model of Strong Stationary Vortex Turbul... (by )
  • Excitation of Waves at 2 ΩP,e and Back P... (by )
  • Structure Function Measurements of the I... (by )
  • Evolving Towards a Critical Point: a Pos... (by )
  • The Effect of Nonlinear Ionospheric Cond... (by )
  • A Semi-phenomenological Approach to Expl... (by )
  • Beyond Multifractional Brownian Motion: ... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.