World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Structure Function Analysis and Intermittency in the Atmospheric Boundary Layer : Volume 15, Issue 6 (27/11/2008)

By Vindel, J. M.

Click here to view

Book Id: WPLBN0003978386
Format Type: PDF Article :
File Size: Pages 15
Reproduction Date: 2015

Title: Structure Function Analysis and Intermittency in the Atmospheric Boundary Layer : Volume 15, Issue 6 (27/11/2008)  
Author: Vindel, J. M.
Volume: Vol. 15, Issue 6
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2008
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Redondo, J. M., Yagüe, C., & Vindel, J. M. (2008). Structure Function Analysis and Intermittency in the Atmospheric Boundary Layer : Volume 15, Issue 6 (27/11/2008). Retrieved from http://www.netlibrary.net/


Description
Description: Agencia Estatal de Meteorología, Madrid, Spain. Data from the SABLES98 experimental campaign (Cuxart et al., 2000) have been used in order to study the relationship of the probability distribution of velocity increments (PDFs) to the scale and the degree of stability. This connection is demonstrated by means of the velocity structure functions and the PDFs of the velocity increments.

Using the hypothesis of local similarity, so that the third order structure function scaling exponent is one, the inertial range in the Kolmogorov sense has been identified for different conditions, obtaining the velocity structure function scaling exponents for several orders. The degree of intermittency in the energy cascade is measured through these exponents and compared with the forcing intermittency revealed through the evolution of flatness with scale.

The role of non-homogeneity in the turbulence structure is further analysed using Extended Self Similarity (ESS). A criterion to identify the inertial range and to show the scale independence of the relative exponents is described. Finally, using least-squares fits, the values of some parameters have been obtained which are able to characterize intermittency according to different models.


Summary
Structure function analysis and intermittency in the atmospheric boundary layer

Excerpt
Angheluta, L., Benzi, R., Biferale, L., Procaccia, I., and Toschi, F.: Anomalous scaling exponents in nonlinear models of turbulence, Phys. Rev. Lett., 97, 1–4, 2006.; Anselmet, F., Gagne, Y., Hopfinger, E. J., and Antonia, R. A.: High-order velocity structure functions in turbulent shear flows, J. Fluid Mech., 140, 63–89, 1984.; Balbastro, G. C., Sonzogni, V. E., Franck, G., and Storti, M.: Acción del viento sobre cubiertas abovedadas aisladas: simulación numérica, Mecánica Computacional Vol. XXIII, Bariloche, Argentina, November 2004.; Batchelor, G. K. and Townsend, A. A.: The nature of turbulent motion at large wave numbers, Proc. Royal Soc. London A., 199, 238–255, 1949.; Benzi, R., Ciliberto, S., Tripiccione, R., Baudet, C., Massaioli, F., and Succi, S.: Extended self-similarity in turbulent flows, Physical Review E., 48, R32, 1993.; Biferale, L.: Probability distribution functions in turbulent flows and shell models, Phys. Fluids A., 5, 428–435, 1993.; Biferale, L., Bodenschatz, E., Cencini, M., Lanotte, A. S., Ouellette, N. T., Toschi, F., and Xu, H.: Lagrangian structure functions in turbulence: A quantitative comparison between experiment and direct numerical simulation, Phys. Fluids, 20, 065103, doi:10.1063/1.2930672, 2008.; Böttcher, F., Barth, S., and Peinke, J.: Small and large scale fluctuations in atmospheric wind speeds, Stochastic environmental research and risk assessment, 21, 299–308, 2007.; Chevillard, L., Castaing, B., and Lévêque, E.: On the rapid increase of intermittency in the near-dissipation range of fully developed turbulence, Eur. Phys. J. B., 45, 561–567, 2005.; Chevillard, L., Castaing, B., Lévêque, E., and Arneodo, A.: Unified multifractal description of velocity increments statistics in turbulence: intermittency and skewness, Physica D.: Non linear Phenomena, 218, 77–82, 2006.; Cuxart, J., Yagüe, C., Morales, G., Terradellas, E., Orbe, J., Calvo, J., Fernández, A., Soler, M. R., Infante, C., Buenestado, P., Espinalt, A., Joergensen, H. E., Rees, J. M., Vilá, J., Redondo, J. M., Cantalapiedra, I. R., and Conangla, L.: Stable atmospheric boundary-layer experiment in Spain (SABLES98): a report, Bound.-Lay. Meteor., 96, 337–370, 2000.; Eyink, G. L.: Local 4/5-law and energy dissipation anomaly in turbulence, Nonlinearity, 16, 137–145, 2003.; Frisch, U.: Turbulence, Cambridge University Press, England, 296 pp., 1995.; Giles, M. J.: Anomalous scaling in homogeneous isotropic turbulence, J. Phisics A.: Mathematical and General, 34, 4389–4435, 2001.; Glickman, Todd S.: Glossary of Meteorology, Second Edition, American Meteorological Society, Boston, 2000.; Gotoh, T.: Turbulence research at large Reynolds numbers using high resolution DNS, RIKEN Review, 40, 3–6, 2001.; Grossmann, S. and Lohse, D.: Scale resolved intermittency in turbulence, Phys. Fluids, 6, 611–617, 1994.; Kolmogorov, A. N.: Dissipation of energy in locally isotropic turbulence, C. R. Acad. Sci. USSR, 32, 16–18, 1941.; Kolmogorov, A. N.: A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number, J. Fluid Mech. 13, 82–85, 1962.; Landau, L. D. and Lifshitz, E. M.: Fluids Mechanics, Pergamon Press, Oxford, 1959.; Li, Y. and Meneveau, C.: Origin of non-gaussian statistics in hydrodynamic turbulence, Phys. Rev. Lett. 95, 164502, 1–4, 2005.; Li, Y. and Meneveau, C.: Intermittency trends and lagrangian evolution of non-gaussian statistics in turbulent flow and scalar transport, J. Fluid Mech., 558, 133–142, 2006.; Mahjoub, O. B., Redondo, J. M., and Babiano, A.: Structure functions in complex flows, Appl. Sci. Res., 59, 299–313, 1998.; Mahjoub, O. B.: Non-local dynamics and intermittency in non-homogeneous flows, PhD, Technical University of Catalonia (UPC), 139 pp., 2000.; Mahjoub, O. B., Redondo, J. M., and Babiano, A.: Self similarity and intermittency in a turbulent non-homogeneous wake, edited by: Dopazo, C., 783–786, CIMNE, 2000.; Mahjoub, O. B., Granata, T

 

Click To View

Additional Books


  • Calibration of a Radiocarbon Age : Volum... (by )
  • Mitigation of Coupled Model Biases Induc... (by )
  • Multifractal Structure of the Large-scal... (by )
  • Ion Motion in the Current Sheet with She... (by )
  • Generation of Second Mode Solitary Waves... (by )
  • Flux-gradient Relationship for Turbulent... (by )
  • Experimental and Numerical Study of Spat... (by )
  • Optimal Localized Observations for Advan... (by )
  • Wavelet Analysis of the Seismograms for ... (by )
  • Coherence and Predictability of Extreme ... (by )
  • Cyclic Markov Chains with an Application... (by )
  • 20Th Century Intraseasonal Asian Monsoon... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.