World Library  
Flag as Inappropriate
Email this Article

Thin-film transistor

Article Id: WHEBN0000199410
Reproduction Date:

Title: Thin-film transistor  
Author: World Heritage Encyclopedia
Language: English
Subject: List of Windows Phone 8.1 devices, Organic electronics, OLED, Amorphous silicon, Time-multiplexed optical shutter
Collection: Semiconductors, Thin Films, Transistor Types
Publisher: World Heritage Encyclopedia

Thin-film transistor

Several types of TFT constructions.

A thin-film transistor (TFT) is a special kind of field-effect transistor made by depositing thin films of an active semiconductor layer as well as the dielectric layer and metallic contacts over a supporting (but non-conducting) substrate. A common substrate is glass, because the primary application of TFTs is in liquid-crystal displays. This differs from the conventional transistor, where the semiconductor material typically is the substrate, such as a silicon wafer.


  • Manufacture 1
  • Applications 2
  • Structure of a TFT-display matrix 3
  • References 4


TFTs can be made using a wide variety of semiconductor materials. A common material is silicon. The characteristics of a silicon-based TFT depend on the silicon's crystalline state; that is, the semiconductor layer can be either amorphous silicon,[1] microcrystalline silicon,[1] or it can be annealed into polysilicon.

Other materials which have been used as semiconductors in TFTs include organic field-effect transistors or OTFTs.

By using transparent semiconductors and transparent electrodes, such as indium tin oxide (ITO), some TFT devices can be made completely transparent. Such transparent TFTs (TTFTs) can be used for construction of video display panels.

Because conventional substrates cannot withstand high annealing temperatures, the deposition process must be completed under relatively low temperatures. Chemical vapor deposition and physical vapor deposition (usually sputtering) are applied. The first solution-processed TTFTs, based on zinc oxide, were reported in 2003 by researchers at Oregon State University.[4] The Portuguese laboratory CENIMAT at the Universidade Nova de Lisboa has produced the world’s first completely transparent TFT at room temperature. CENIMAT also developed the first paper transistor, which may lead to applications such as magazines and journal pages with moving images.


The best known application of thin-film transistors is in TFT LCDs, an implementation of LCD technology. Transistors are embedded within the panel itself, reducing crosstalk between pixels and improving image stability.

As of 2008, many color LCD TVs and monitors use this technology. TFT panels are frequently used in digital radiography applications in general radiography. A TFT is used in both direct and indirect capture as a base for the image receptor in medical radiography.

AMOLED (organic light-emitting diode) screens also contain a TFT layer.

The most beneficial aspect of TFT technology is its use of a separate transistor for each pixel on the display. Because each transistor is small, the amount of charge needed to control it is also small. This allows for very fast re-drawing of the display.

Structure of a TFT-display matrix

This picture does not include the actual light-source (usually cold-cathode fluorescent lamps or white LEDs), just the TFT-display matrix.


  1. ^ a b Kanicki, Jerzy (1992). Amorphous & Microcystalline Semiconductor Devices Volume II: Materials and Device Physics. Artech House, Inc.  
  2. ^ Brody, T. Peter (November 1984). "The Thin Film Transistor - A Late Flowering Bloom". IEEE Transactions on Electron Devices 31 (11): 1614–1628.  
  3. ^ Brody, T. Peter (1996). "The birth and early childhood of active matrix - a personal memoir". Journal of the SID 4/3: 113–127. 
  4. ^ a b Wager, John. OSU Engineers Create World's First Transparent Transistor. College of Engineering, Oregon State University, Corvallis, OR: OSU News & Communication, 2003. 29 July 2007.
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.