#jsDisabledContent { display:none; } My Account | Register | Help

# Spectral resolution

Article Id: WHEBN0001995690
Reproduction Date:

 Title: Spectral resolution Author: World Heritage Encyclopedia Language: English Subject: Collection: Spectroscopy Publisher: World Heritage Encyclopedia Publication Date:

### Spectral resolution

The spectral resolution of a spectrograph, or, more generally, of a frequency spectrum, is a measure of its ability to resolve features in the electromagnetic spectrum. It is usually denoted by \Delta\lambda, and is closely related to the resolving power of the spectrograph, defined as

R = {\lambda\over\Delta\lambda},

where \Delta\lambda is the smallest difference in wavelengths that can be distinguished at a wavelength of \lambda. For example, the Space Telescope Imaging Spectrograph (STIS) can distinguish features 0.17 nm apart at a wavelength of 1000 nm, giving it a resolution of 0.17 nm and a resolving power of about 5,900. An example of a high resolution spectrograph is the Cryogenic High-Resolution IR Echelle Spectrograph (CRIRES) installed at ESO's Very Large Telescope, which has a spectral resolving power of up to 100,000.[1]

## Contents

• Doppler effect 1
• IUPAC definition 2
• References 4

## Doppler effect

The spectral resolution can also be expressed in terms of physical quantities, such as velocity; then it describes the difference between velocities \Delta v that can be distinguished through the Doppler effect. Then, the resolution is \Delta v and the resolving power is

R = {c\over\Delta v}

where c is the speed of light. The STIS example above then has a spectral resolution of 51 km/s.

## IUPAC definition

IUPAC defines resolution in optical spectroscopy as the minimum wavenumber, wavelength or frequency difference between two lines in a spectrum that can be distinguished.[2] Resolving power, R, is given by the transition wavenumber, wavelength or frequency, divided by the resolution.[3]

## References

1. ^ - CRIRES Instrument page at ESO
2. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version:  (2006–) "resolution in optical spectroscopy".
3. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version:  (2006–) "resolving power, R, in optical spectroscopy".

• Kim Quijano, J., et al. (2003), STIS Instrument Handbook, Version 7.0, (Baltimore: STScI)
• Frank L. Pedrotti, S.J. (2007), Introduction to optics, 3rd version, (San Francisco)
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.

Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.