World Library  
Flag as Inappropriate
Email this Article

Signal strength

Article Id: WHEBN0000690346
Reproduction Date:

Title: Signal strength  
Author: World Heritage Encyclopedia
Language: English
Subject: Redirects for discussion/Log/2015 May 3, List of North American broadcast station classes, Gap loss, Free-space path loss, Five by five
Collection: Mobile Technology, Radio Electronics
Publisher: World Heritage Encyclopedia

Signal strength

In telecommunications, particularly in radio, signal strength refers to the magnitude of the electric field at a reference point that is at a significant distance from the transmitting antenna. It may also be referred to as received signal level or field strength. Typically, it is expressed in voltage per length or signal power received by a reference antenna. High-powered transmissions, such as those used in broadcasting, are expressed in dB-millivolts per metre (dBmV/m). For very low-power systems, such as mobile phones, signal strength is usually expressed in dB-microvolts per metre (dBµV/m) or in decibels above a reference level of one milliwatt (dBm). In broadcasting terminology, 1 mV/m is 1000 µV/m or 60 dBµ (often written dBu).

  • 100 dBµ or 100 mV/m: blanketing interference may occur on some receivers
  • 60 dBµ or 1.0 mV/m: frequently considered the edge of a radio station's protected area in North America
  • 40 dBµ or 0.1 mV/m: the minimum strength at which a station can be received with acceptable quality on most receivers


  • Relationship to average radiated power 1
  • Cellphone signals 2
    • Estimated received signal strength 2.1
    • Number of decades 2.2
    • Estimate the cell radius 2.3
  • See also 3
  • References 4
  • External links 5

Relationship to average radiated power

The electric field strength at a specific point can be determined from the power delivered to the transmitting antenna, its geometry and radiation resistance. Consider the case of a bruh distribution is essentially sinusoidal and the radiating electric field is given by

Current distribution on antenna of length \scriptstyle{L} equal to one half wavelength (\scriptstyle{\lambda /2}).
E_\theta (r) = {-jI_\circ\over 2\pi\varepsilon_\circ c\, r} {\cos\left(\scriptstyle{\pi\over 2}\cos\theta\right)\over\sin\theta} e^{j\left(\omega t-kr\right)}

where \scriptstyle{\theta} is the angle between the antenna axis and the vector to the observation point, \scriptstyle{I_\circ} is the peak current at the feed-point, \scriptstyle{\varepsilon_\circ \, = \, 8.85\times 10^{-12} \, F/m } is the permittivity of free-space, \scriptstyle{c \, = \, 3\times 10^8 \, m/S} is the speed of light in a vacuum, and \scriptstyle{r} is the distance to the antenna in meters. When the antenna is viewed broadside (\scriptstyle{\theta \, = \, \pi/2}) the electric field is maximum and given by

\vert E_{\pi/2}(r) \vert = { I_\circ \over 2\pi\varepsilon_\circ c\, r }\, .

Solving this formula for the peak current yields

I_\circ = 2\pi\varepsilon_\circ c \, r\vert E_{\pi/2}(r) \vert \, .

The average power to the antenna is

{P_{avg} = {1 \over 2} R_a \, I_\circ^2 }

where \scriptstyle{R_a = 73.13\,\Omega} is the center-fed half-wave antenna’s radiation resistance. Substituting the formula for \scriptstyle{I_\circ} into the one for \scriptstyle{P_{avg}} and solving for the maximum electric field yields

\vert E_{\pi/2}(r)\vert \, = \, {1 \over \pi\varepsilon_\circ c \, r} \sqrt \, = \, {9.91 \over r} \sqrt{ P_{avg} } \quad (L = \lambda /2) \, .

Therefore, if the average power to a half-wave dipole antenna is 1 mW, then the maximum electric field at 313 m (1027 ft) is 1 mV/m (60 dBµ).

For a short dipole (\scriptstyle{L \ll \lambda /2}) the current distribution is nearly triangular. In this case, the electric field and radiation resistance are

E_\theta (r) = {-jI_\circ \sin (\theta) \over 4 \varepsilon_\circ c\, r} \left ( {L \over \lambda} \right ) e^{j\left(\omega t-kr\right)} \, , \quad R_a = 20\pi^2 \left ( {L \over \lambda} \right )^2 .

Using a procedure similar to that above, the maximum electric field for a center-fed short dipole is

\vert E_{\pi/2}(r)\vert \, = \, {1 \over \pi\varepsilon_\circ c \, r} \sqrt \, = \, {9.48 \over r} \sqrt{ P_{avg} } \quad (L \ll \lambda /2)\, .

Cellphone signals

Although there are cell phone base station tower networks across many nations globally, there are still many areas within those nations that do not have good reception. Some rural areas are unlikely ever to be effectively covered since the cost of erecting a cell tower is too high for only a few customers. Even in high reception areas it is often found that basements and the interiors of large buildings have poor reception.

Weak signal strength can also be caused by destructive interference of the signals from local towers in urban areas, or by the construction materials used in some buildings causing rapid attenuation of signal strength. Large buildings such as warehouses, hospitals and factories often have no usable signal further than a few metres from the outside walls.

This is particularly true for the networks which operate at higher frequency since these are attenuated more rapidly by intervening obstacles, although they are able to use reflection and diffraction to circumvent obstacles.

Estimated received signal strength

The estimated received signal strength in a mobile device can be estimated as follows:

dBm_e = -113.0 - 40.0 \ \log_{10} ( r / R )

More general you can take the path loss exponent into account:[1]

dBm_e = -113.0 - 10.0 \ \gamma \ \log_{10} ( r / R )
Parameter Description
dBme Estimated received power in mobile device
-113 Minimum received power
40 Average path loss per decade for mobile networks
r Distance mobile device - cell tower
R Mean radius of the cell tower
γ Path loss exponent (average value of 4 for mobile networks)

If the mobile device is at cell radius distance from the cell tower the received power is estimated as -113 dBm. The effective path loss is depending on the frequency, the topography, and the environmental conditions.

Actually one could use any known signal power dBm0 at any distance r0 as a reference:

dBm_e = dBm_{0} - 10.0 \ \gamma \ \log_{10} ( r / r_{0} )

Number of decades

\log_{10} ( R / r ) would give an estimate of the number of decades, which coincides with an average path loss of 40 dB/decade.

Estimate the cell radius

When we measure cell distance r and received power dBmm pairs, then we can estimate the mean cell radius as follows:

R_e = \operatorname{avg}[ \ r \ 10 ^ { ( dBm_m + 113.0 ) / 40.0 } \ ]

Specialized calculation models exist to plan the location of a new cell tower, taking into account local conditions and radio equipment parameters. Take also into consideration that mobile radio signals have line-of-sight propagation, unless reflexion would occur.

See also


  1. ^ Figueiras, João; Frattasi, Simone (2010). Mobile Positioning and Tracking: From Conventional to Cooperative Techniques. John Wiley & Sons.  

External links

  • Global map of cell phone signal by network. Based on crowdsourced data.
  • Crowd sourced map of cell and wifi signals. Data release under the Open Database License.
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.