World Library  
Flag as Inappropriate
Email this Article

Schwarz minimal surface

Article Id: WHEBN0036763333
Reproduction Date:

Title: Schwarz minimal surface  
Author: World Heritage Encyclopedia
Language: English
Subject: Triply periodic minimal surface, Catalan's minimal surface, K-noid, Henneberg surface, Neovius surface
Collection: Differential Geometry, Minimal Surfaces
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Schwarz minimal surface

In differential geometry, the Schwarz minimal surfaces are periodic minimal surfaces originally described by Hermann Schwarz.

In the 1880s Schwarz and his student E. R. Neovius described periodic minimal surfaces.[1][2] They were later named by Alan Schoen in his seminal report that described the gyroid and other triply periodic minimal surfaces.[3]

The surfaces were generated using symmetry arguments: given a solution to Plateau's problem for a polygon, reflections of the surface across the boundary lines also produce valid minimal surfaces that can be continuously joined to the original solution. If a minimal surface meets a plane at right angles, then the mirror image in the plane can also be joined to the surface. Hence given a suitable initial polygon inscribed in a unit cell periodic surfaces can be constructed.[4]

The Schwarz surfaces have topological genus 3, the minimal genus of triply periodic minimal surfaces.[5]

They have been considered as models for periodic nanostructures in block copolymers, electrostatic equipotential surfaces in crystals.,[6] and hypothetical negatively curved graphite phases.[7]

Contents

  • Schwarz P ("Primitive") 1
  • Schwarz D ("Diamond") 2
  • Schwarz H ("Hexagonal") 3
  • Schwarz CLP ("Crossed layers of parallels") 4
  • Illustrations 5
  • References 6

Schwarz P ("Primitive")

Schwarz P surface

Schoen named this surface 'primitive' because it has two interwined congruent labyrinths, each with the shape of an inflated tubular version of the simple cubic lattice. While the standard P surface has cubic symmetry the unit cell can be any rectangular box, producing a family of minimal surfaces with the same topology.[8]

It can be approximated by the implicit surface

\cos(x) + \cos(y) + \cos(z) = 0 \ .[9]

The P surface has been considered for prototyping tissue scaffolds with a high surface-to-volume ratio and porosity.[10]

Schwarz D ("Diamond")

Schwarz D surface

Schoen named this surface 'diamond' because has two intertwined congruent labyrinths, each having the shape of an inflated tubular version of the diamond bond structure. It is sometimes called the F surface in the literature.

It can be approximated by the implicit surface

\sin(x)\sin(y)\sin(z) + \sin(x)\cos(y)\cos(z) + \cos(x)\sin(y)\cos(z) + \cos(x)\cos(y)\sin(z) = 0.\

An exact expression exists in terms of elliptic integrals, based on the Weierstrass representation.[11]

Schwarz H ("Hexagonal")

Schwarz H surface

The H surface is similar to a catenoid with a triangular boundary, allowing it to tile space.

Schwarz CLP ("Crossed layers of parallels")

Schwarz CLP surface

Illustrations

  • http://www.susqu.edu/brakke/evolver/examples/periodic/periodic.html
  • http://www.indiana.edu/~minimal/archive/Triply/genus3.html
  • http://www.thphys.uni-heidelberg.de/~biophys/index.php?lang=e&n1=research_tpms

References

  1. ^ H. A. Schwarz, Gesammelte Mathematische Abhandlungen, Springer, Berlin, 1933.
  2. ^ E. R. Neovius, "Bestimmung zweier spezieller periodischer Minimal achen", Akad. Abhandlungen, Helsingfors, 1883.
  3. ^ Alan H. Schoen, Infinite periodic minimal surfaces without self-intersections, NASA Technical Note TN D-5541 (1970)[1]
  4. ^ Hermann Karcher, Konrad Polthier, "Construction of Triply Periodic Minimal Surfaces", Phil. Trans. R. Soc. Lond. A 16 September 1996 vol. 354 no. 1715 2077–2104
  5. ^ http://schoengeometry.com/e-tpms.html
  6. ^ Alan L. Mackay, "Periodic minimal surfaces", Physica B+C, Volume 131, Issues 1–3, August 1985, Pages 300–305
  7. ^ H. Terrones and A. L. Mackay, "Negatively curved graphite and triply periodic minimal surfaces", Journal of Mathematical Chemistry, Volume 15, Number 1 (1994), 183–195, DOI:10.1007/BF01277558
  8. ^ W. H. Meeks. The theory of triply-periodic minimal surfaces. Indiana University Math. Journal, 39 (3):877{936, 1990.
  9. ^ http://archive.msri.org/about/sgp/jim/geom/level/library/triper/index.html
  10. ^ Jaemin Shin, Sungki Kim, Darae Jeong, Hyun Geun Lee, Dongsun Lee, Joong Yeon Lim, and Junseok Kim, Finite Element Analysis of Schwarz P Surface Pore Geometries for Tissue-Engineered Scaffolds, Mathematical Problems in Engineering, Volume 2012, Article ID 694194, doi:10.1155/2012/694194
  11. ^ Paul J.F. Gandy, Djurdje Cvijović, Alan L. Mackay, Jacek Klinowski, Exact computation of the triply periodic D (`diamond') minimal surface, Chemical Physics Letters, Volume 314, Issues 5–6, 10 December 1999, Pages 543–551
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.