This article will be permanently flagged as inappropriate and made unaccessible to everyone. Are you certain this article is inappropriate? Excessive Violence Sexual Content Political / Social
Email Address:
Article Id: WHEBN0033190128 Reproduction Date:
The Orion Multi-Purpose Crew Vehicle (MPCV) is a spacecraft intended to carry a crew of up to four[2] astronauts to destinations beyond-low Earth orbit (LEO). Currently under development by NASA[9] for launch on the Space Launch System,[10] Orion will facilitate human exploration of the Moon, asteroids, and Mars.
The MPCV was announced by NASA on May 24, 2011.[11] Its design is based on the Orion Crew Exploration Vehicle from the cancelled Constellation program.[12] It has two main modules. The Orion command module is being built by Lockheed Martin at the Michoud Assembly Facility in New Orleans.[13] The Orion service module, provided by the European Space Agency,[14][15] is being built by Airbus Defence and Space.
The MPCV's debut unmanned test flight, known as Exploration Flight Test 1 (EFT-1), was launched aboard a Delta IV Heavy rocket on December 5, 2014 on a flight lasting 4 hours and 24 minutes, landing at its target in the Pacific Ocean at 10:29 Central[3][4][16][17] (delayed from the previous day due to technical problems[18]). The first manned mission is not expected to take place until 2021 at the earliest.[19]
On January 14, 2004, U.S. President Crew Exploration Vehicle (CEV) as part of the Vision for Space Exploration.[20] The CEV was partly a reaction to the Space Shuttle Columbia accident, the subsequent findings and report by the Columbia Accident Investigation Board (CAIB), and the White House's review of the American space program. The CEV effectively replaced the conceptual Orbital Space Plane (OSP), which itself was proposed after the cancellation of the Lockheed Martin X-33 program to produce a replacement for the space shuttle. As the Vision for Space Exploration was developed into the Constellation program under NASA administrator Sean O'Keefe, the Crew Exploration Vehicle was renamed the Orion Crew Exploration Vehicle, after the constellation of the same name.[21]
Constellation proposed using the Orion CEV in both crew and cargo variants to support the International Space Station and as a crew vehicle for a return to the Moon. The Apollo-like design included a service module for life support and propulsion and was originally intended to land on solid ground on the US west coast using airbags, but later changed to ocean splashdown.[22] The Orion CEV was to weigh about 25 tons (23 metric tons), less than the 33 ton (30 metric tons) Apollo command/service module. The crew module would weigh about 9.8 tons (8.9 metric tons), greater than the equivalent Apollo command module at 6.4 tons (5.8 metric tons). With a diameter of 16.5 feet (5 meters) as opposed to 12.8 feet (3.9 meters), it provided 2.5 times greater volume.[23] The service module was originally planned to use liquid methane (LCH4) as its fuel, but switched to hypergolic propellants due to the infancy of oxygen/methane-powered rocket technologies and the goal of launching the Orion CEV by 2012.[24][25]
The Orion CEV design consisted of two main parts: a conical crew module (CM) and a cylindrical service module (SM) holding the spacecraft's propulsion system and expendable supplies. Both were based substantially on the Apollo command and service modules (Apollo CSM) flown between 1967 and 1975.[26]
The Orion CEV was to be launched on an Ares I rocket to low Earth orbit, where it would rendezvous with the Altair lunar surface access module (LSAM) launched on a heavy-lift Ares V launch vehicle for lunar missions.
On October 11, 2010, the Constellation program was cancelled, ending development of the Altair, Ares I, and Ares V. The Orion Crew Exploration Vehicle survived the cancellation and was renamed the Multi-Purpose Crew Vehicle (MPCV), to be launched on the Space Launch System.[27]
On October 30, 2014, the spacecraft completed its first Flight Readiness Review (FRR), allowing the vehicle to be integrated with the Delta IV rocket that carried it to space on the successful Exploration Flight Test 1 (EFT-1) on December 5, 2014.[28][29]
The Orion MPCV resembles its Apollo-era predecessors, but its technology and capability are more advanced. It is designed to support long-duration deep space missions, with up to 21 days active crew time plus 6 months quiescent.[30] During the quiescent period crew life support would be provided by another module such as a Deep Space Habitat. The spacecraft's life support, propulsion, thermal protection and avionics systems are designed to be upgradeable as new technologies become available.
The MPCV spacecraft includes both crew and service modules, and a spacecraft adaptor.
The MPCV's crew module is larger than Apollo's and can support more crew members for short or long-duration spaceflight missions. The service module fuels and propels the spacecraft as well as storing oxygen and water for astronauts. The service module's structure is also being designed to provide locations to mount scientific experiments and cargo.
The Orion crew module (CM) is the reusable transportation capsule that provides a habitat for the crew, provides storage for consumables and research instruments, and serves as the docking port for crew transfers.[31] The crew module is the only part of the MPCV that returns to Earth after each mission and is a 57.5° frustum shape, similar to that of the Apollo command module. As projected, the CM will be 5.02 meters (16 ft 6 in) in diameter and 3.3 meters (10 ft 10 in) in length,[32] with a mass of about 8.5 metric tons (19,000 lb). It is to be built by the Lockheed Martin Corporation.[33] It will have more than 50% more volume than the Apollo capsule, which had an interior volume of 5.9 m3 (210 cu ft), and will carry four to six astronauts.[34] After extensive study, NASA has selected the Avcoat ablator system for the Orion crew module. Avcoat, which is composed of silica fibers with a resin in a honeycomb made of fiberglass and phenolic resin, was previously used on the Apollo missions and on select areas of the space shuttle for early flights.[35]
Orion's CM will use advanced technologies, including:
The CM will be constructed of the aluminium lithium (Al/Li) alloy used on the shuttle's external tank, and on the Delta IV and Atlas V rockets. The CM itself will be covered in the same Nomex felt-like thermal protection blankets used on parts on the shuttle not subject to critical heating, such as the payload bay doors. The reusable recovery parachutes will be based on the parachutes used on both the Apollo spacecraft and the Space Shuttle Solid Rocket Boosters, and will also use the same Nomex cloth for construction. Water landings will be the exclusive means of recovery for the Orion CM.[22][37]
To allow Orion to mate with other vehicles it will be equipped with the NASA Docking System, which is somewhat similar to the APAS-95 docking mechanism used on the Shuttle fleet. The spacecraft will employ a Launch Escape System (LES) like that used in Mercury and Apollo, along with an Apollo-derived "Boost Protective Cover" (made of fiberglass), to protect the Orion CM from aerodynamic and impact stresses during the first 2 1⁄2 minutes of ascent. Its designers claim that the MPCV is designed to be 10 times safer during ascent and reentry than the Space Shuttle.[38] The CM is designed to be refurbished and reused. In addition, all of the Orion's component parts have been designed to be as generic as possible, so that between the craft's first test flight in 2014 and its projected Mars voyage in the 2030s, the spacecraft can be upgraded as new technologies become available.[31]
Orion ground test article in Colorado on May 13, 2011.
EFT-1 Orion after final weld on June 22, 2012.
The Orion MPCV ground test vehicle is lifted into the acoustic chamber at Lockheed Martin's facilities near Denver in preparation for the Launch Abort Vehicle Configuration Test.
The Orion ground test vehicle sits on a work stand in the Operations and Checkout O&C Facility at NASA's Kennedy Space Center in Florida.
Completed EFT-1 Orion on September 8, 2014.
In May 2011 the ESA director general announced a possible collaboration with NASA to work on a successor to the ATV (Automated Transfer Vehicle).[39] On June 21, 2012, Airbus Defence and Space announced that they had been awarded two separate studies, each worth €6.5 million, to evaluate the possibilities of using technology and experience gained from ATV and Columbus related work for future missions. The first looked into the possible construction of a service module which would be used in tandem with the Orion capsule.[40] The second examined the possible production of a versatile multi purpose orbital vehicle.[41]
On November 21, 2012, the ESA decided to develop an ATV derived service module for the Orion MPCV.[42] The service module will likely be manufactured by Airbus Defence and Space in Bremen, Germany.[43]
"ESA's contribution is going to be critical to the success of Orion's 2017 mission"
NASA announced on January 16, 2013 that the ESA service module will fly on Exploration Mission 1, the debut launch of the Space Launch System.[14]
In the event of an emergency on the launch pad or during ascent, a launch escape system called the launch abort system (LAS) will separate the crew module from the launch vehicle using a solid rocket-powered launch abort motor (AM), which will produce more thrust (though for a much shorter duration) than the Atlas 109-D booster that launched astronaut John Glenn into orbit in 1962.[44] There are two other propulsion systems in the LAS stack: the attitude control motor (ACM) and the jettison motor (JM). On July 10, 2007, Orbital Sciences, the prime contractor for the LAS, awarded Alliant Techsystems (ATK) a $62.5 million sub-contract to, "design, develop, produce, test and deliver the launch abort motor." ATK, which had the prime contract for the first stage of the Ares I rocket, intended to use a "reverse flow" design for the motor.[45] On July 9, 2008, NASA announced that ATK had completed a vertical test stand at a facility in Promontory, Utah to test launch abort motors for the Orion spacecraft.[46] Another long-time space motor contractor, Aerojet, was awarded the jettison motor design and development contract for the LAS. As of September 2008, Aerojet has, along with team members Orbital Sciences, Lockheed Martin and NASA, successfully demonstrated two full-scale test firings of the jettison motor. This motor is important to every flight in that it functions to pull the LAS tower away from the vehicle after a successful launch. The motor also functions in the same manner for an abort scenario.
Orion Lite was an unofficial name used in the media for a lightweight crew capsule proposed by Bigelow Aerospace in collaboration with Lockheed Martin. It was to be based on the Orion spacecraft that Lockheed Martin was developing for NASA. It would be a lighter, less capable and cheaper version of the full Orion.
NASA performed environmental testing of Orion from 2007 to 2011 at the Glenn Research Center Plum Brook Station in Sandusky, Ohio. The Center's Space Power Facility is the world's largest thermal vacuum chamber.[60]
ATK Aerospace successfully completed the first Orion Launch-Abort-System (LAS) test on November 20, 2008. The LAS motor could provide 500,000 lbf (2,200 kN) of thrust in case an emergency situation should arise on the launch pad or during the first 300,000 feet (91 km) of the rocket's climb to orbit. The 2008 test firing of the LAS was the first time a motor with reverse flow propulsion technology of this scale had ever been tested.[61]
On March 2, 2009, a full size, full weight command module mock-up (pathfinder) began its journey from the Langley Research Center to the White Sands Missile Range, New Mexico, for at-gantry launch vehicle assembly training and for LAS testing.[62]
On May 10, 2010, NASA successfully executed the LAS PAD-Abort-1 test at White Sands New Mexico, launching a boilerplate (mock-up) Orion capsule to an altitude of approximately 6000 feet. The test used three solid-fuel rocket motors – a main thrust motor, an attitude control motor and the jettison motor.[63]
Future LAS test plans: As of February 2014, NASA planned to launch the Orion Multi Purpose Crew Vehicle Ascent Abort 2 test flight (AA‑2) from Spaceport Florida Launch Complex 46 in 2018.[64]
Prior to the first actual test flight and recovery of the Orion space vehicle at sea in December of 2014, several preparatory vehicle recovery tests were performed. In 2009 during the Constellation phase of the program, the Post-landing Orion Recovery Test (PORT) was designed to determine and evaluate methods of crew rescue and what kind of motions the astronaut crew could expect after landing. This would include conditions outside the capsule for the recovery team. The evaluation process supported NASA's design of landing recovery operations including equipment, ship and crew necessities.
The Port Test used a full-scale boilerplate (mock-up) of NASA's Orion crew module and was tested in water under simulated and real weather conditions. Tests began March 23, 2009 with a Navy-built, 18,000-pound boilerplate when it was placed in a test pool at the Naval Surface Warfare Center's Carderock Division in West Bethesda, Md. Full sea testing ran April 6–30, 2009, at various locations off the coast of NASA's Kennedy Space Center with media coverage.[65]
Under the Orion program testing, Orion continued the "crawl, walk, run" approach used in PORT testing.
The "crawl" phase was performed August 12–16, 2013 with the Stationary Recovery Test (SRT). The Stationary Recovery Test demonstrated the recovery hardware and techniques that were to be employed for the recovery of the Orion crew module in the protected waters of Naval Station Norfolk utilizing the USS Arlington as the recovery ship. The USS Arlington is a LPD 17 amphibious assault ship. The recovery of the Orion crew module utilizes unique features of the LPD 17 class ship to safely and economically recover the Orion crew module and eventually its astronaut crew.[66]
The "walk" and "run" phases were performed with the Underway Recovery Test (URT). Also Utilizing the LPD 17 class ship, the URT were performed in more realistic sea conditions off the coast of California in early 2014 to prepare the US Navy / NASA team for recovering the unmanned Exploration Flight Test 1 (EFT-1) Orion crew module. The URT tests completed the pre-launch test phase of the Orion recovery system.
On December 5, 2014 the Orion capsule was launched atop a Delta IV Heavy rocket, and performed its first test flight. Although the launch had first been planned for the previous day, sluggish rocket valves and excessively high wind caused the delay. The December 5th liftoff went as planned, with the capsule orbiting the Earth twice for a total of 4.5 hours before splashdown at 10:29 AM Central Time. It was NASA's first launch of a vehicle for manned space travel since the final retirement of the Space Shuttle fleet in 2011, and the first time that NASA had launched a spacecraft capable of taking humans more than a few hundred miles into space since the launch of Apollo 17 in 1972 (42 years prior). Astronauts were deliberately left off the flight to test the heat shield, parachutes, jettisoning components, and on-board computers before committing a crew. As a result, instead of standard seats, cockpit displays, and life-support equipment, the craft was filled with sentimental toys and memorabilia including bits of Moon dust, the crew patch worn by America's first spacewoman Sally Ride, a Capt. James Kirk collector's doll owned by Star Trek actor William Shatner, and more. The Orion's splashdown and recovery took place with the USS Anchorage performing the retrieval.[67] Orion's first manned flight is currently scheduled for 2021.[68]
Debates over the preferred sequence of Orion's future manned missions are ongoing.[75][76] In particular, the United States House Science Subcommittee on Space is exploring the merits of undertaking an Apollo-like return to the Moon first, as compared with prioritizing an asteroid rendezvous mission.[75]
The crux of ongoing debates hinges upon answers to these following questions:[75]
Presently, the United States House Science Subcommittee on Space is debating two possible paths,[75][76] whether to:
Regardless of which of the following sequences is selected, "the ultimate goal of human exploration is to chart a path for human expansion into the solar system."[75]
The reasons provided for first exploring an asteroid, as follows, versus returning to the Moon first as above, appear to revolve around reduced cost[upper-alpha 1] and technical advancement:[upper-alpha 2]
These are the primary reasons for returning to the Moon first:[75]
While NASA offers that the Orion capsule will be a part of some future manned Mars mission, with only 80 cu. ft. of living space per crew member,[7] it would clearly only serve as a "near Earth delivery vehicle" in such a mission, delivering astronauts up to some point in the vicinity of Earth, and then onto another (as yet to be designed) interplanetary transport ship, which will then transport the future Mars astronauts onwards on their proposed 16 month round trip mission to Mars.[81]
MPCV-related:
CCDev 1 and 2 and CCiCap (formerly CCDev 3) Related:
COTS-related:
Other countries:
This article incorporates public domain material from websites or documents of the National Aeronautics and Space Administration.
Moon, Apollo 11, Project Mercury, Project Gemini, Apollo 15
Solar System, Mars, Earth, Apollo program, Pluto
Apollo program, International Space Station, Soviet Union, Mars, Space Shuttle
Mars, International Space Station, Space Shuttle, Apollo program, Nasa
Russia, Russian language, European Space Agency, Space Shuttle, United States
International Space Station, Space Shuttle, Specific impulse, Nasa, Apollo program
Space Launch System, Nasa, Orion (spacecraft), Solar System, Exploration of the Moon
Lockheed Martin, Orion (spacecraft), Mars, Solar system, Constellation Program
Space Launch System, Orion (spacecraft), Kennedy Space Center, Moon, Exploration Mission 2
Kennedy Space Center, Mars Science Laboratory, Jet Propulsion Laboratory, Goddard Space Flight Center, International Space Station