World Library  
Flag as Inappropriate
Email this Article

Gecko

Article Id: WHEBN0000013134
Reproduction Date:

Title: Gecko  
Author: World Heritage Encyclopedia
Language: English
Subject: Kaijudo (TV series), Lizard, Marianne Island, Evolve (TV series), Africa/Featured picture/18
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Gecko

Geckos are lizards belonging to the infraorder Gekkota, found in warm climates throughout the world. They range from 1.6 to 60 cm. Most geckos cannot blink, but they often lick their eyes to keep them clean and moist. They have a fixed lens within each iris that enlarges in darkness to let in more light.

Geckos are unique among lizards in their vocalizations. They use chirping sounds in social interactions with other geckos. They are the most species-rich group of lizards, with about 1,500 different species worldwide.[6] The New Latin gekko and English "gecko" stem from the Indonesian-Malay gēkoq, which is imitative of the sound the animals make.[7]

All geckos, excluding the Eublepharidae family, lack eyelids and instead have a transparent membrane, which they lick to clean.[8] Nocturnal species have excellent night vision; their color vision is 350 times more sensitive than human color vision.[9] The nocturnal geckos evolved from diurnal species which had lost the eye rods. The gecko eye therefore modified its cones that increased in size into different types both single and double. Three different photopigments have been retaiend and are sensitive to UV, blue, and green. They also use a multifocal optical system that allows them to generate a sharp image for at least two different depths.[10][11]

Most gecko species can lose their tails in defense, a process called autotomy.[12] Many species are well known for their specialized toe pads that enable them to climb smooth and vertical surfaces, and even cross indoor ceilings with ease. Geckos are well-known to people who live in warm regions of the world, where several species of geckos make their home inside human habitations. These (for example the house gecko) become part of the indoor menagerie and are often welcomed, as they feed on insects, including mosquitoes. Unlike most lizards, geckos are usually nocturnal.

The largest species, the kawekaweau, is only known from a single, stuffed specimen found in the basement of a museum in Marseille, France. This gecko was 60 cm (24 in) long and it was likely endemic to New Zealand, where it lived in native forests. It was probably wiped out along with much of the native fauna of these islands in the late 19th century, when new invasive species such as rats and stoats were introduced to the country during European colonization. The smallest gecko, the Jaragua sphaero, is a mere 1.6 cm long and was discovered in 2001 on a small island off the coast of the Dominican Republic.[13]

Common traits

Oligocene-era gecko trapped in amber

Geckos occur in various patterns and colors, and are among the most colorful lizards in the world. Some species can change colour and may be lighter in colour at night. Some species are parthenogenic, which means the female is capable of reproducing without copulating with a male. This improves the gecko's ability to spread to new islands. However, in a situation where a single female gecko populates an entire island, the island will suffer from a lack of genetic variation within the geckos that inhabit it. The gecko's mating call sounds like a shortened bird chirping which attracts males, when they are nearby. Like other reptiles, geckos are ectothermic,[14] producing very little metabolic heat. Essentially a gecko′s body temperature is dependent on its environment. Also, in order to accomplish their main functions—such as locomotion, feeding, reproduction, etc.—geckos must have a relatively elevated temperature.[14]

Shedding or molting

All geckos shed their skin at fairly regular intervals, with species differing in timing and method. Leopard geckos will shed at about two- to four-week intervals. The presence of moisture aids in the shedding. When shedding begins, the gecko will speed the process by detaching the loose skin from its body and eating it.[15]

Adhesion ability

Close-up of the underside of a gecko's foot as it walks on vertical glass

Gecko toes have special adaptations that allow them to [16] The spatula-shaped setae arranged in lamellae on gecko footpads enable attractive van der Waals' forces between the β-keratin lamellae/setae/spatulae structures and the surface.[17][18] These van der Waals interactions involve no fluids; in theory, a boot made of synthetic setae would adhere as easily to the surface of the International Space Station as it would to a living-room wall, although adhesion varies with humidity.[19][20] The setae on the feet of geckos are also self-cleaning and will usually remove any clogging dirt within a few steps.[21][22] Teflon, which has very low surface energy,[23] is more difficult for geckos to adhere to than many other surfaces.

Increasing humidity typically fortifies gecko adhesion, [19][20][24][25][26] even on hydrophobic surfaces, yet is reduced if completey immersed in water. The role of water in that system is under discussion, yet recent experiments agree that the presence of molecular water layers (water molecules carry a very large dipole moment) on the setae as well as on the surface increase the surface energy of both, therefore the energy gain in getting these surfaces in contact is enlarged, which results in an increased gecko adhesion force. [19][20][24][27][28] Moreover, the elastic properties of the b-keratin change with water uptake. [19][20][24] Friction experiments with gecko toes—torn parallel to surfaces—have shown to be influenced also by electrostatic forces. [29]

Gecko toes seem to be "double jointed", but this is a misnomer and is properly called digital hyperextension.[30] Gecko toes can hyperextend in the opposite direction from human fingers and toes. This allows them to overcome the van der Waals force by peeling their toes off surfaces from the tips inward. In essence, this peeling action alters the angle of incidence between millions of individual setae and the surface, reducing the van der Waals force. Geckos' toes operate well below their full attractive capabilities most of the time, because the margin for error is great depending upon the surface roughness, and therefore the number of setae in contact with that surface.

Uroplatus fimbriatus clinging to glass

Use of small van der Waals attraction force requires very large surface areas: every square millimeter of a gecko's footpad contains about 14,000 hair-like setae. Each seta has a diameter of 5 μm. Human hair varies from 18 to 180 μm, so a human hair could hold between 12 and 1300 setae. Each seta is in turn tipped with between 100 and 1,000 spatulae.[21] Each spatula is 0.2 μm long[21] (one five-millionth of a meter), or just below the wavelength of visible light.[31]

The setae of a typical mature 70 g (2.5 oz) gecko would be capable of supporting a weight of 133 kg (293 lb):[32][33] each spatula can exert an adhesive force of 5 to 25 nN.[24][34] The exact value of the adhesion force of a spatula varies with the surface energy of the substrate to which it adheres. Recent studies [35][36] have moreover shown that the component of the surface energy derived from long-range forces, such as van der Waals forces, depends on the material's structure below the outermost atomic layers (up to 100 nm beneath the surface); taking that into account, the adhesive strength can be inferred.

Recent studies have also revealed that apart from the setae, phospholipids—fatty substances produced naturally in their bodies—also come into play.[37] These lipids lubricate the setae and allow the gecko to detach its foot before the next step.

Development of geckel, a super-sticky adhesive that can attach to both wet and dry surfaces, has been inspired by adhesion in gecko feet.[38]

Teeth

Geckos are polyphyodonts and able to replace each of their 100 teeth every 3 to 4 months.[39] Next to the full grown tooth there is a small replacement tooth developing from the odontogenic stem cell in the dental lamina.[40] The formation of the teeth is pleurodont; they are fused (ankylosed) by their sides to the inner surface of the jaw bones. This formation is common in all species in the order Squamata.

Taxonomy and classification

Pores on the skin are often used in classification.

The [16][41][42][43][44]

Species of geckos

About 1,500 species of geckos occur worldwide, including these familiar or notable species:

  • Coleonyx variegatus, the western banded gecko, is native to the southwestern United States and northwest Mexico.
  • Cyrtopodion brachykolon, the bent-toed gecko, is found in northwestern Pakistan; it was first described in 2007.
  • Eublepharis macularius, the leopard gecko, is the most common gecko kept as a pet; it does not have adhesive toe pads and cannot climb the glass of a vivarium.
  • Gehyra mutilata (Peropus mutilatus), the stump-toed gecko, is able to vary its color from very light to very dark to camouflage itself; this gecko is at home in the wild, as well as in residential areas.
  • Gekko gecko, the Tokay gecko, is a large, common, Southeast Asian gecko known for its aggressive temperament, loud mating calls, and bright markings.
  • Hemidactylus is genus of geckos in which there are many varieties.
    • Hemidactylus frenatus, the Common house gecko, thrives around man and human habitation structures in the tropics and subtropics worldwide.
    • Hemidactylus garnotii, the Georgia in the US.
    • Hemidactylus mabouia, the Tropical house gecko, Afro-American house gecko or Cosmopolitan house gecko, is a species of house gecko native to sub-Saharan Africa and also currently found in North, Central and South America and the Caribbean.
    • Hemidactylus turcicus, the Mediterranean house gecko, is frequently found in and around buildings, and is an introduced species in the US.
  • Lepidodactylus lugubris, the mourning gecko, is originally an East Asian and Pacific species; it is equally at home in the wild and residential neighborhoods.
  • Pachydactylus bibroni, Bibron's gecko, is native to southern Africa; this hardy arboreal gecko is considered a household pest.
  • Phelsuma laticauda, the gold dust day gecko, is a diurnal gecko; it lives in northern Madagascar and on the Comoros. It is also an introduced species in Hawaii.
  • Ptychozoon is a genus of arboreal geckos from Southeast Asia also known as flying geckos or parachute geckos; they have wing-like flaps from the neck to the upper leg to help them conceal themselves on trees and provide lift while jumping.
  • Rhacodactylus is genus of geckos native to New Caledonia.
    • Rhacodactylus ciliatus, the crested gecko, was believed extinct until rediscovered in 1994, and is gaining popularity as a pet.
    • Rhacodactylus leachianus, the New Caledonian giant gecko, was first described by Cuvier in 1829; it is the largest living species of gecko.
  • Sphaerodactylus ariasae, the dwarf gecko, is native to the Caribbean Islands; it is the world's smallest lizard.
  • Tarentola mauritanica, the crocodile gecko or Moorish gecko, is commonly found in the Mediterranean region from the Iberian Peninsula and southern France to Greece and northern Africa; their most distinguishing characteristics are their pointed heads, spiked skin, and tails resembling that of a crocodile.

Geckos in popular culture

  • United States insurance company Geico employs an animated gecko in their television and written media advertising campaign.[45]
  • In the post-apocalyptic video game Fallout:New Vegas, there are bipedal geckos mutated by radiation that serve as common enemies, and some of them also possess the ability to breathe fire.
  • Gecko climbing skins, used for Ski touring, are named after the lizard. The logo is based on a gecko's foot. This brand of climbing skins uses a different kind of glue to stick the skins to the base of the ski: It uses a "molecular fusion (suction) effect" instead of the classic glue used by other brands.

References

  1. ^ Arnold, E.N.;  
  2. ^ Borsuk-Białynicka, M. (1990). "Gobekko cretacicus gen. et. sp. n., a new gekkonid lizard from the Cretaceous of the Gobi Desert". Acta Palaeontologica Polonica 35 (1–2): 67–76. 
  3. ^ Conrad, Jack L.; Norell, Mark A. (1 December 2006). "High-resolution X-ray computed tomography of an Early Cretaceous gekkonomorph (Squamata) from Öösh (Övörkhangai; Mongolia)". Historical Biology 18 (4): 405–431.  
  4. ^ Conrad, Jack L. (3 June 2008). "Phylogeny and Systematics of Squamata (Reptilia) Based on Morphology". Bulletin of the American Museum of Natural History 310: 1–182.  
  5. ^ Bauer, Aaron M.; Böhme, Wolfgang; Weitschat, Wolfgang (April 2005). "An Early Eocene gecko from Baltic amber and its implications for the evolution of gecko adhesion". Journal of Zoology 265 (4): 327–332.  
  6. ^ http://reptile-database.reptarium.cz/advanced_search?taxon=gecko&submit=Search Geckos in the Reptile Database
  7. ^ gecko, n. Oxford English Dictionary Second edition, 1989; online version September 2011. Accessed 29 October 2011. Earlier version first published in New English Dictionary, 1898.
  8. ^ Badger, David (2006). Lizards: a Natural History of Some Uncommon Creatures. St. Paul, MN: Voyageur Press. p. 47.  
  9. ^ Roth, L.S.V.; Lundstrom, L.; Kelber, A.; Kroger, R. H. H.; Unsbo, P. (1 March 2009). "The pupils and optical systems of gecko eyes". Journal of Vision 9 (3): 27–27.  
  10. ^ The pupils and optical systems of gecko eyes
  11. ^ Gecko-inspired multifocal contact lenses, cameras on the anvil
  12. ^ Mihai, Andrei (Sep 9, 2009). "Gecko tail has a mind of its own". ZME Science. 
  13. ^ Piper, Ross (2007). Extraordinary Animals: an Encyclopedia of Curious and Unusual Animals. Westport, Conn.: Greenwood Press. p. 143.  
  14. ^ a b Girons, Hubert. "Thermoregulation in Reptiles with Special Reference to the Tuatara and Its Ecophysiology" Tuatara: Volume 24, Issue 2, August 1980. Victoria University of Wellington Library, August 1980. Web. May 31, 2014. http://nzetc.victoria.ac.nz/tm/scholarly/tei-Bio24Tuat02-t1-body-d2.html.
  15. ^ http://www.geckocare.net/shedding.php
  16. ^ a b c Gamble, Tony; Greenbaum, Eli; Jackman, Todd R.; Russell, Anthony P.; Bauer, Aaron M.; Castresana, Jose (June 27, 2012). "Repeated Origin and Loss of Adhesive Toepads in Geckos". PLoS ONE 7 (6): e39429.  
  17. ^ http://www.nisenet.org/scientific-images/gecko_toe
  18. ^ Santos, Daniel; Matthew Spenko; Aaron Parness; Kim Sangbae; Mark Cutkosky (2007). "Directional adhesion for climbing: Theoretical and practical considerations". Journal of Adhesion Science and Technology 21 (12–13): 1317–1341.  
  19. ^ a b c d
  20. ^ a b c d Prowse, M.S.; Wilkinson, Matt; Puthoff, Jonathan B.; Mayer, George; Autumn, Kellar (2011). "Effects of humidity on the mechanical properties of gecko setae". Acta Biomaterialia 7 (2): 733–738.  
  21. ^ a b c Hansen, W. R.; Autumn, K. (2005). "Evidence for self-cleaning in gecko setae".  
  22. ^ How Geckos Stick to Walls.
  23. ^ Why do the gecko's feet not stick to a teflon surface?.
  24. ^ a b c d Huber, G.; Mantz, H.; Spolenak, R.; Mecke, K.; Jacobs, K.; Gorb, S.N. and Arzt, E. (2005). "Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements". Proceedings of the National Academy of Sciences 102 (45): 16293–6.  
  25. ^ Chen, B.; Gao, H. (2010). "An alternative explanation of the effect of humidity in gecko adhesion: stiffness reduction enhances adhesion on a rough surface". International Journal of Applied Mechanics 2: 1–9.  
  26. ^ Loskill, P.; Puthoff, J.; Wilkinson, M.; Mecke, K.; Jacobs, K.; Autumn, K. (September 2012). "Macroscale adhesion of gecko setae reflects nanoscale differences in subsurface composition". J. R. Soc. Interface 10 (78): 20120587.  
  27. ^ Chen, B.; Gao, H. (2010). "An alternative explanation of the effect of humidity in gecko adhesion: stiffness reduction enhances adhesion on a rough surface". International Journal of Applied Mechanics 2: 1–9.  
  28. ^ Loskill, P.; Puthoff, J.; Wilkinson, M.; Mecke, K.; Jacobs, K.; Autumn, K. (September 2012). "Macroscale adhesion of gecko setae reflects nanoscale differences in subsurface composition". J. R. Soc. Interface 10 (78): 20120587.  
  29. ^ "Role of contact electrification and electrostatic interactions in gecko adhesion". Journal of the Royal Society. April 8, 2014. Retrieved July 10, 2014. 
  30. ^ Russell, A. P. (1975). "A contribution to the functional analysis of the foot of the Tokay, Gekko gecko (Reptilia: Gekkonidae)". Journal of Zoology, London 176: 437–476.  
  31. ^ Autumn, Kellar; Sitti, M.; Liang, Y.A.; Peattie, A.M.; Hansen, W.R.; Sponberg, S.; Kenny, T.W.; Fearing, R.; Israelachvili, J.N.; Full, R.J. (2002). "Evidence for van der Waals adhesion in gecko setae". PNAS 99 (19): 12252–12256.  
  32. ^ "Geckos can hang upside down carrying 40kg". physics.org. Retrieved 2 November 2012. 
  33. ^ Autumn, Kellar (September 29, 2003). "How do gecko lizards unstick themselves as they move across a surface?". Scientific American. Retrieved 23 March 2013. 
  34. ^ Lee, Haeshin; Lee, Bruce P.; Messersmith, Phillip B. (2007). "A reversible wet/dry adhesive inspired by mussels and geckos".  
  35. ^ Loskill, P.; Puthoff, J.; Wilkinson, M.; Mecke, K.; Jacobs, K.; Autumn, K. (September 2012). "Macroscale adhesion of gecko setae reflects nanoscale differences in subsurface composition". J. R. Soc. Interface 10 (78): 20120587.  
  36. ^ Loskill, P.; Haehl, H.; Grandthyll, S.; Faidt, T.; Mueller, F.; Jacobs, K. (November 2012). "Is adhesion superficial? Silicon wafers as a model system to study van der Waals interactions". Adv. Coll. Interf. Sci. 179–182: 107–113.  
  37. ^ Hsu, P. Y.; Ge, L.; Li, X.; Stark, A. Y.; Wesdemiotis, C.; Niewiarowski, P. H.; Dhinojwala, A. (24 August 2011). "Direct evidence of phospholipids in gecko footprints and spatula-substrate contact interface detected using surface-sensitive spectroscopy". Journal of the Royal Society Interface 9 (69): 657–664.  
  38. ^ "Gecko glue exploits mussel power". BBC News. 
  39. ^ Mechanism of tooth replacement in Leopard geckos
  40. ^ Identification of putative dental epithelial stem cells in a lizard with life-long tooth replacement
  41. ^ Han, D.; Zhou, K.; Bauer, A.M. (2004). "Phylogenetic relationships among gekkotan lizards inferred from c-mos nuclear DNA sequences and a new classification of the Gekkota". Biological Journal of the Linnean Society 83 (3): 353–368.  
  42. ^ Gamble, T.; Bauer, A.M.; Greenbaum, E.; Jackman, T.R. (July 2008). "Out of the blue: A novel, trans-Atlantic clade of geckos (Gekkota, Squamata)". Zoologica Scripta 37 (4): 355–366.  
  43. ^ Gamble, Tony; Bauer, Aaron M.; Greenbaum, Eli; Jackman, Todd R. (21 August 2007). "Evidence for Gondwanan vicariance in an ancient clade of gecko lizards". Journal of Biogeography: 070821084123003.  
  44. ^ Gamble, T.; Bauer, A.M.; Colli, G.R.; Greenbaum, E.; Jackman, T.R.; Vitt, L.J.; Simons, A.M. (February 2011). "Coming to America: Multiple Origins of New World Geckos". Journal of Evolutionary Biology 24 (2): 231–244.  
  45. ^ https://www.geico.com/about/corporate/word-from-sponsor/

Further reading

  • Forbes, Peter (4th Estate, London 2005) The Gecko's Foot—Bio Inspiration: Engineered from Nature ISBN 0-00-717990-1 in H/B
  • Zug, George. (Reptilia, Gekkonidae) Hemiphyllodactylus Speciation and Dispersal in a Low Diversity Taxon: The Slender Geckos. Smithsonian Contributions to Zoology, no. 631. Washington, D.C.: Smithsonian Institution Scholarly Press, 2010.
  • 7:e39429PLoS ONEGamble, T., E. Greenbaum, T.R. Jackman, A.P. Russell, and A.M. Bauer. 2012. Repeated origin and loss of adhesive toepads in geckos"

External links

  • Gecko gallery and information
  • How Geckos Stick to Walls
  • Comprehensive gecko care information
  • Global gecko association site with pictures, caresheets, species list
  • Gecko anatomy picture
  • The Gecko's Foot
  • Artificial gecko feet for a Spiderman suit (BBC 2007-08-28)
  • list of geckos in the Reptile Database
  • Gecko MagazineGecko Time Online
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.