World Library  
Flag as Inappropriate
Email this Article

Electron beam ion trap

Article Id: WHEBN0011060531
Reproduction Date:

Title: Electron beam ion trap  
Author: World Heritage Encyclopedia
Language: English
Subject: Electron beam, Atomic physics, Plasma physics, Electromagnetism, Timeline of United States inventions (1946–91)
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Electron beam ion trap

Schematics of an electron beam ion trap. Red: electron source filament, blue: electron beam, black: electrodes, green: magnet. The thin line represents the electric potential along the axis.

Electron beam ion trap (EBIT) is an electromagnetic bottle that produces and confines highly charged ions. An EBIT uses an electron beam focused with a powerful magnetic field to ionize atoms to high charge states by successive electron impact.

It was invented by M. Levine and R. Marrs at LLNL and LBNL.[1]

Operation

The positive ions produced in the region where the atoms intercept the electron beam are tightly confined in their motion by the strong attraction exerted by the negative charge of the electron beam. Therefore, they orbit around the electron beam, crossing it frequently and giving rise to further collisions and ionization. To restrict the ion motion along the direction of the electron beam axis, trapping electrodes carrying positive voltages with respect to a central electrode are used.

The resulting ion trap can hold ions for many seconds and minutes, and conditions for reaching the highest charge states, up to bare uranium (U92+) can be achieved in this way.[2]

The strong charge needed for radial confinement of the ions requires large electron beam currents of tens up to hundreds of milliampere. At the same time, high voltages (up to 200 kilovolts) are used for accelerating the electrons in order to achieve high charge states of the ions.

To avoid charge reduction of ions by collisions with neutral atoms from which they can capture electrons, the vacuum in the apparatus is usually maintained at UHV levels, with typical pressure values of only 10-12 torr, (~10−10 pascal).

Applications

EBITs are used to investigate the fundamental properties of highly charged ions e. g. by photon spectroscopy in particular in the context of relativistic atomic structure theory and quantum electrodynamics (QED). Their suitability to prepare and reproduce in a microscopic volume the conditions of high temperature astrophysical plasmas and magnetic confinement fusion plasmas make them very appropriate research tools. Other fields include the study of their interactions with surfaces and possible applications to microlithography.

References

  1. ^ Levine, M. A., et al., The Electron Beam Ion Trap: A New Instrument for Atomic Physics Measurements, Physica Scripta, T22, p. 157 (1988)
  2. ^ Marrs, R. E., et al., "Production and Trapping of Hydrogenlike and Bare Uranium Ions in an Electron Beam Ion Trap", Phys. Rev. Lett., 72, p. 4082 (1994)
  • Roscoe E. Marrs, Peter Beiersdorfer, and Dieter Schneider, Physics Today, 27 (October 1994) – Description of the Electron Beam Ion Trap
  • R. E. Marrs, M. A. Levine, D. A. Knapp, J. R. Henderson, Phys. Rev. Lett. 60, 1715 (1988) – First EBIT atomic spectroscopy measurement
  • C. A. Morgan et al., Observation of Visible and UV Magnetic Dipole Transitions in Highly-Charged Xenon and Barium, Phys. Rev. Lett. 74, 1716 (1995)
  • H. P. Cheng, J. D. Gillaspy, Nanoscale modification of silicon surfaces via Coulomb explosion, Phys. Rev. B 55, 2628 (1997)
  • J. D. Gillaspy, D. C. Parks, L. P. Ratliff, Masked ion beam lithography with highly charged ions, Journal of Vacuum Science and Technology B, 16, 3294 (1998)
  • F. J. Currell et al., A new versatile electron-beam ion trap, Journal of the Physical Society of Japan 65, 3186 (1996)
  • H. F. Beyer, H.-J. Kluge, V. P. Shevelko, in: X-ray Radiation of Highly Charged Ions, Springer Series on Atoms and Plasmas, Springer Verlag, Berlin-Heidelberg 1997

External links

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.