World Library  
Flag as Inappropriate
Email this Article

Eight-to-fourteen modulation

Article Id: WHEBN0001210782
Reproduction Date:

Title: Eight-to-fourteen modulation  
Author: World Heritage Encyclopedia
Language: English
Subject: Kees Schouhamer Immink, Run-length limited, 8b/10b encoding, Line code, Compact Disc Digital Audio
Collection: Audio Storage, Dutch Inventions, Line Codes, Optical Computer Storage, Video Storage
Publisher: World Heritage Encyclopedia

Eight-to-fourteen modulation

Eight-to-fourteen modulation (EFM) is a data encoding technique – formally, a channel code – used by compact discs (CD), laserdiscs (LD) and pre-Hi-MD MiniDiscs. EFMPlus is a related code, used in DVDs and SACDs. EFM and EFMPlus were both invented by Kees A. Schouhamer Immink. European Patent Office President Benoît Battistelli: "Immink's invention of EFM made a decisive contribution to the digital revolution."[1]


  • Technological classification 1
  • How it works 2
  • EFMPlus 3
  • References 4
  • External links 5

Technological classification

EFM[2] belongs to the class of DC-free run length limited (RLL) codes; these have the following two properties:

  • the spectrum (power density function) of the encoded sequence vanishes at the low-frequency end and
  • both the minimum and maximum number of consecutive bits of the same kind are within specified bounds.[3][4]

In optical recording systems, servo mechanisms accurately follow the track in three dimensions: radial, focus, and rotational speed. Everyday handling damage, such as dust, fingerprints, and tiny scratches, not only affects retrieved data, but also disrupts the servo functions. In some cases, the servos may skip tracks or get stuck. Specific sequences of pits and lands are particularly susceptible to disc defects, and disc playability can be improved if such sequences are barred from recording. The use of EFM produces a disc that is highly resilient to handling and solves the engineering challenge in a very efficient manner.

How it works

Under EFM rules, the data to be stored is first broken into eight-bit blocks (bytes). Each eight-bit block is translated into a corresponding fourteen-bit codeword using a lookup table.

The 14-bit words are chosen such that binary ones are always separated by a minimum of two and a maximum of ten binary zeroes. This is because bits are encoded with NRZI encoding, or modulo-2 integration, so that a binary one is stored on the disc as a change from a land to a pit or a pit to a land, while a binary zero is indicated by no change. A sequence 0011 would be changed into 1101 or its inverse 0010 depending on the previous pit written. If there are two zeroes between two consecutive ones, then the written sequence will have three consecutive zeros (or ones), for example, 010010 will translate into 100011 (or 011100). The EFM sequence 000100010010000100 will translate into 111000011100000111 (or its inverse).

Because EFM ensures there are at least two zeroes between every two ones, it is guaranteed that every pit and land is at least three bit-clock cycles long. This property is very useful since it reduces the demands on the optical pickup used in the playback mechanism. The ten consecutive-zero maximum ensures worst-case clock recovery in the player.

EFM requires three merging bits between adjacent fourteen-bit codewords to ensure that consecutive codewords can be cascaded without violating the specified minimum and maximum runlength constraint. The three merging bits are also used to shape the spectrum of the encoded sequence. Thus, in the final analysis, seventeen bits of disc space are needed to encode eight bits of data.


EFMPlus[5] is the channel code used in DVDs and SACDs.

The EFMPlus encoder is based on a deterministic finite automaton having four states, which translates eight-bit input words into sixteen-bit codewords. The binary sequence generated by the finite state machine encoder has at least two and at most ten zeros between consecutive ones, which is the same as in classic EFM. There are no packing (merging) bits as in classic EFM.

EFMPlus effectively reduces storage requirements by one channel bit per user byte, increasing storage capacity by 1/16 = 6.25%. Decoding of EFMPlus-generated sequences is accomplished by a sliding-block decoder of length two, that is, two consecutive codewords are required to uniquely reconstitute the sequence of input words.


  1. ^ EPO. "Pioneering the digital revolution: Kornelis Schouhamer Immink, developer of CD, DVD, and Blu-ray Disc coding named finalist for the European Inventor Award". Retrieved 2015-06-07. 
  2. ^ U.S. Patent 4,501,000, EFM Patent, applied in Compact Disc, CD-R, MiniDisc.
  3. ^ Kees A. Schouhamer Immink. Runlength-Limited Sequences', Proceedings IEEE, vol. 78, no. 11, pp. 1745-1759, Nov. 1990."'". Retrieved 2015-08-23. 
  4. ^ Kees A. Schouhamer Immink. "Codes for Mass Data Storage Systems, Second fully revised edition, Shannon Foundation Publishers, Eindhoven, The Netherlands, Nov. 2004. ISBN 90-74249-27-2.". Retrieved 2015-08-23. 
  5. ^ U.S. Patent 5,696,505, EFMPlus Patent, applied in DVD, DVD±RW, SACD

External links

Related websites

  • Eight-to-Fourteen Modulation Conversion Table
  • ECMA-130 CD-ROM standard, including full EFM description
  • ECMA-267 DVD-ROM standard, including full EFMPlus description
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.