World Library  
Flag as Inappropriate
Email this Article

Craniology

Article Id: WHEBN0001212328
Reproduction Date:

Title: Craniology  
Author: World Heritage Encyclopedia
Language: English
Subject: Colonialism, Egyptomania, List of subjects in Gray's Anatomy: II. Osteology, Orazak Ismagulov, List of medical roots, suffixes and prefixes
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Craniology

Anthropometry (Greek anthropos (άνθρωπος - "man") and metron (μέτρον - "measure") therefore "measurement of man") refers to the measurement of the human individual. An early tool of physical anthropology, it has been used for identification, for the purposes of understanding human physical variation, in paleoanthropology and in various attempts to correlate physical with racial and psychological traits.

Today, anthropometry plays an important role in industrial design, clothing design, ergonomics and architecture where statistical data about the distribution of body dimensions in the population are used to optimize products. Changes in life styles, nutrition and ethnic composition of populations lead to changes in the distribution of body dimensions (e.g. the obesity epidemic), and require regular updating of anthropometric data collections.

History

Main article: History of anthropometry

The history of anthropometry includes and spans various concepts, both scientific and pseudoscientific, such as craniometry, paleoanthropology, biological anthropology, phrenology, physiognomy, forensics, criminology, phylogeography, human origins, and cranio-facial description, as well as correlations between various anthropometrics and personal identity, mental typology, personality, cranial vault and brain size, and other factors.

Throughout various times in history, applications of anthropometry have ranged vastly—from accurate scientific description and empidemiological analysis to rationales for eugenics and overtly racist social movements—and its points of concern have been numerous, diverse, and sometimes highly unexpected.

Individual variation

Auxologic

Main article: Auxology

Height

Main article: Human height

Human height varies greatly between individuals and across populations for a variety of complex biological, genetic, environmental, and other factors. Due to methodological and practical problems, its measurement is also subject to considerable error in statistical sampling.

The average height in genetically and environmentally homogeneous populations is often proportional across a large number of individuals. Exceptional height variation (around 20% deviation from a population's average) within such a population is sometimes due to gigantism or dwarfism, which are caused by specific genes or endocrine abnormalities.[1]

In the most extreme population comparisons, for example, the average female height in Bolivia is 1.422 m (4 ft 8 in) while the average male height in the Dinaric Alps is 1.856 m (6 ft 1 in), an average difference of 43.4 cm (17 inches). Similarly, the shortest and tallest of individuals, Chandra Bahadur Dangi and Robert Wadlow, have ranged from 1 ft 9 in (0.53 m) to 8 ft 11.1 in (2.72 m), respectively.[2][3]

Weight

Main article: Human weight

Human weight varies extensively both individually and across populations, with the most extreme documented examples of adults being Lucia Zarate who weighed 4.7 pounds (2.1 kg), and Jon Brower Minnoch who weighed 1,400 pounds (640 kg), and with population extremes ranging from 109.3 pounds (49.6 kg) in Bangladesh to 192.7 pounds (87.4 kg) in Micronesia.[4][5]

Organs

Limited research has shown that the adult brain size varies from 974.9 cm3 (59.49 cu in) to 1,498.1 cm3 (91.42 cu in) in females and 1,052.9 cm3 (64.25 cu in) to 1,498.5 cm3 (91.44 cu in) in males, with the average being 1,130 cm3 (69 cu in) and 1,260 cm3 (77 cu in), respectively.[6][7] The right cerebral hemisphere is typically larger than the left, whereas the cerebellar hemispheres are typically of more similar size.

Size of the human stomach varies significantly in adults, with one study showing areas ranging from 520 cm3 (32 cu in) to 1,536 cm3 (93.7 cu in) and weights ranging from 77 grams (2.7 oz) to 453 grams (16.0 oz).[8]

Male and female genitalia exhibit considerable individual variation, with penis size differing substantially and vaginal size differing significantly in healthy adults.[9][10][11]

Aesthetic

Human beauty and physical attractiveness have been preoccupations throughout history which often intersect with anthropometric standards. Cosmetology, facial symmetry, and waist–hip ratio are three such examples where measurements are commonly thought to be fundamental.

Evolutionary science

Anthropometric studies today are conducted to investigate the evolutionary significance of differences in body proportion between populations whose ancestors lived in different environments. Human populations exhibit climatic variation patterns similar to those of other large-bodied mammals, following Bergmann's rule, which states that individuals in cold climates will tend to be larger than ones in warm climates, and Allen's rule, which states that individuals in cold climates will tend to have shorter, stubbier limbs than those in warm climates.

On a micro evolutionary level anthropologists use anthropometric variation to reconstruct small-scale population history. For instance John Relethford's studies of early 20th-century anthropometric data from Ireland show that the geographical patterning of body proportions still exhibits traces of the invasions by the English and Norse centuries ago.

Measuring instruments

3D body scanners

Today anthropometry can be performed with three-dimensional scanners. A global collaborative study to examine the uses of three-dimensional scanners for health care was launched in March 2007. The Body Benchmark Study Body Volume Index has the potential to be used as a long-term computer based anthropometric measurement for health care. In 2001 the UK conducted the largest sizing survey using scanners up to date. Since then several national surveys have followed in the UK's pioneering steps, notably SizeUSA, SizeMexico & Size Thailand, the latter still ongoing. Size UK showed that the nation had become taller and heavier but not as much as expected. Since 1951, when the last women's survey had taken place, the average weight for women had gone up from 62 to 65 kg.

Baropodographic

Main article: Baropodography

Baropodographic devices fall into two main categories: (i) Data analysis).

The spatial and temporal resolutions of the images generated by commercial pedobarographic systems range from approximately 3 to 10 mm and 25 to 500 Hz, respectively. Finer resolution is limited by sensor technology. Such resolutions yield a contact area of approximately 500 sensors (for a typical adult human foot with surface area of approximately 100 cm2).[17] For a stance phase duration of approximately 0.6 seconds during normal walking,[18] approximately 150,000 pressure values, depending on the hardware specifications, are recorded for each step.

Neuroimaging

Direct measurements involve examinations of brains from corpses, or more recently, imaging techniques such as MRI, which can be used on living persons. Such measurements is used research on neuroscience and intelligence. Brain volume data and other craniometric data is used in mainstream science to compare modern-day animal species, and to analyze the evolution of the human species in archeology. With the discovery that many blood proteins vary consistently among populations, followed by the discovery of the DNA code, the invention of the polymerase chain reaction that amplifies trace amounts of DNA, and the decoding of the human genome, phylogeographers largely switched away from craniofacial anthropometry whenever DNA is available.

Epidemiology and medical anthropology

Anthropometric measurements also have uses in epidemiology and medical anthropology, for example in helping to determine the relationship between various body measurements (height, weight, percentage body fat, etc.) and medical outcomes. Anthropometric measurements are frequently used to diagnose malnutrition in resource-poor clinical settings.

Forensics and criminology

Forensic anthropologists study the human skeleton in a legal setting. A forensic anthropologist can assist in the identification of a decedent through various skeletal analyses that produce a biological profile. Forensic anthropologists utilize the Fordisc program to help in the interpretation of craniofacial measurements in regards to ancestry/race determination.

One part of a biological profile is a person's racial/ancestral affinity. People with considerable European ancestry generally have relatively no prognathism; a relatively small face; a narrow, tear-shaped nasal cavity; a "silled" nasal aperture; tower-shaped nasal bones; a triangular-shaped palate; and an angular and sloping eye orbit shape. People with considerable African ancestry typically have a broad and round nasal cavity; no dam or nasal sill; Quonset hut-shaped nasal bones; notable facial projection in the jaw and mouth area (prognathism); a rectangular-shaped palate; and a square or rectangular eye orbit shape. People with considerable East Asian ancestry are often characterized by a relatively small prognathism; no nasal sill or dam; an oval-shaped nasal cavity; tent-shaped nasal bones; a horseshoe-shaped palate; and a rounded and non-sloping eye orbit shape.[19] Many of these characteristics are only a matter of frequency among particular races: their presence or absence of one or more does not automatically classify an individual into a racial group.

Ergonomics

Main article: Human factors and ergonomics

Today, ergonomics professionals apply an understanding of human factors to the design of equipment, systems and working methods in order to improve comfort, health, safety, and productivity. This includes physical ergonomics in relation to human anatomy, physiological and bio mechanical characteristics; cognitive ergonomics in relation to perception, memory, reasoning, motor response including human–computer interaction, mental workloads, decision making, skilled performance, human reliability, work stress, training, and user experiences; organizational ergonomics in relation to metrics of communication, crew resource management, work design, schedules, teamwork, participation, community, cooperative work, new work programs, virtual organizations, and telework; environmental ergonomics in relation to human metrics affected by climate, temperature, pressure, vibration, and light; visual ergonomics; and others.[20][21]

Biometrics

File:Iris Recognition.ogv

Main article: Biometrics

Biometrics refers to the identification of humans by their characteristics or traits. Biometrics is used in computer science as a form of identification and access control.[22] It is also used to identify individuals in groups that are under surveillance. Biometric identifiers are the distinctive, measurable characteristics used to label and describe individuals.[23] Biometric identifiers are often categorized as physiological versus behavioral characteristics.[24] Examples applications include dermatoglyphics and soft biometrics.

United States military research

The US Military has conducted over 40 anthropometric surveys of U.S. Military personnel between 1945 and 1988, including the 1988 Army Anthropometric Survey (ANSUR) of men and women with its 240 measures. Statistical data from these surveys encompasses over 75,000 individuals.[25]

Fashion design

Scientists working for private companies and government agencies conduct anthropometric studies to determine a range of sizes for clothing and other items. Measurements of the foot are used in the manufacture and sale of footwear: measurement devices may be used either to determine a retail shoe size directly (e.g. the Brannock Device) or to determine the detailed dimensions of the foot for custom manufacture (e.g. ALINEr).[26]

Popular culture

In art Yves Klein termed anthropometries his performance paintings where he covered nude women with paint, and used their bodies as paintbrushes.

See also

References

Further reading

External links

  • Centers for Disease Control and Prevention
  • NASA
  • Anthropometry data at faculty of Industrial Design Engineering at Delft University of Technology
  • Manual for Obtaining Anthropometric Measurements Free Full Text
  • Prepared for the US Access Board: Anthropometry of Wheeled Mobility Project Report Free Full Text
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.