World Library  
Flag as Inappropriate
Email this Article

Cepheid variable

Article Id: WHEBN0000158530
Reproduction Date:

Title: Cepheid variable  
Author: World Heritage Encyclopedia
Language: English
Subject: Variable stars, Polaris, Circinus, Beta Cephei variable, Wendy Freedman
Collection: Astrometry, Cepheid Variables, Standard Candles, Variable Stars
Publisher: World Heritage Encyclopedia

Cepheid variable

Cepheids redirects here. For the fictional species, see "Blind Alley".
RS Puppis as imaged by Hubble (HST)

A Cepheid variable ( or ) is a star that pulsates radially, varying in both temperature and diameter to produce brightness changes with a well-defined stable period and amplitude.

A strong direct relationship between a Cepheid variable's luminosity and pulsation period[1][2] secures for Cepheids their status as important distance indicators for establishing the galactic and extragalactic distance scales.[3][4][5][6]

The term Cepheid originates from Delta Cephei in the constellation Cepheus, the first star of this type identified, by John Goodricke in 1784.


  • Classes 1
    • Classical Cepheids 1.1
    • Type II Cepheids 1.2
    • Anomalous Cepheids 1.3
  • History 2
  • Uncertainties in Cepheid determined distances 3
  • Dynamics of the pulsation 4
  • Examples 5
  • References 6
  • External links 7


Cepheid variables illustration (red dots) at the center of the Milky Way.[7]

Cepheid variables are divided into several subclasses which exhibit markedly different masses, ages, and evolutionary histories: classical Cepheids, type II Cepheids, and anomalous Cepheids. Delta Scuti variables are A class stars on or near the main sequence at the lower end of the instability strip and were originally referred to as dwarf Cepheids. RR Lyrae variables have short periods and lie on the instability strip where it crosses the horizontal branch. Delta Scuti variables and RR Lyrae variables are not generally treated with Cepheid variables although their pulsations originate with the same helium ionisation kappa mechanism.

Classical Cepheids

Classical Cepheids (also known as Population I Cepheids, type I Cepheids, or Delta Cepheid variables) undergo pulsations with very regular periods on the order of days to months. Classical Cepheids are Population I variable stars which are 4–20 times more massive than the Sun,[8] and up to 100,000 times more luminous.[9] These Cepheids are yellow supergiants of spectral class F6 – K2 and their radii change by (~25% for the longer-period I Carinae) millions of kilometers during a pulsation cycle.[10]

Classical Cepheids are used to determine distances to galaxies within the Local Group and beyond, and are a means by which the Hubble constant can be established.[3][4][6][11][12] Classical Cepheids have also been used to clarify many characteristics of our galaxy, such as the Sun's height above the galactic plane and the Galaxy's local spiral structure.[5]

Type II Cepheids

Type II Cepheids (also termed Population II Cepheids) are population II variable stars which pulsate with periods typically between 1 and 50 days.[13][14] Type II Cepheids are typically metal-poor, old (~10 Gyr), low mass objects (~half the mass of the Sun). Type II Cepheids are divided into several subgroups by period. Stars with periods between 1 and 4 days are of the BL Her subclass, 10–20 days belong to the W Virginis subclass, and stars with periods greater than 20 days belong to the RV Tauri subclass.[13][14]

Type II Cepheids are used to establish the distance to the Galactic Center, globular clusters, and galaxies.[5][15][16][17][18][19][20]

Anomalous Cepheids

A group of pulsating stars on the instability strip have periods of less than 2 days, similar to RR Lyrae variables but with higher luminosities. Anomalous Cepheid variables have masses higher than type II Cepheids, RR Lyrae variables, and our sun. It is unclear whether they are young stars on a "turned-back" horizontal branch, blue stragglers formed through mass transfer in binary systems, or a mix of both.[21][22]


On September 10, 1784, Edward Pigott detected the variability of Eta Aquilae, the first known representative of the class of classical Cepheid variables. However, the eponymous star for classical Cepheids is Delta Cephei, discovered to be variable by John Goodricke a few months later.

A relationship between the period and luminosity for classical Cepheids was discovered in 1908 by Henrietta Swan Leavitt in an investigation of thousands of variable stars in the Magellanic Clouds.[23] She published it in 1912[24] with further evidence.

In 1913, Ejnar Hertzsprung conducted research on Cepheids. His research would later require revision, however. In 1915, Harlow Shapley used Cepheids to place initial constraints on the size and shape of the Milky Way, and of the placement of our Sun within it. In 1924, Edwin Hubble established the distance to classical Cepheid variables in the Andromeda Galaxy, until then known as the Andromeda Nebula, and showed that the variables were not members of the Milky Way. Hubble's finding settled the question of whether the Milky Way represented the entire Universe, or was merely one of numerous galaxies in the Universe [see Great Debate (astronomy)].[25]

In 1929, Hubble and

External links

  1. ^ Udalski, A.; Soszynski, I.; Szymanski, M.; Kubiak, M.; Pietrzynski, G.; Wozniak, P.; Zebrun, K. (1999). "The Optical Gravitational Lensing Experiment. Cepheids in the Magellanic Clouds. IV. Catalog of Cepheids from the Large Magellanic Cloud". Acta Astronomica 49: 223.  
  2. ^ Soszynski, I.; Poleski, R.; Udalski, A.; Szymanski, M. K.; Kubiak, M.; Pietrzynski, G.; Wyrzykowski, L.; Szewczyk, O.; Ulaczyk, K. (2008). "The Optical Gravitational Lensing Experiment. The OGLE-III Catalog of Variable Stars. I. Classical Cepheids in the Large Magellanic Cloud". Acta Astronomica 58: 163.  
  3. ^ a b c Freedman, Wendy L.; Madore, Barry F.; Gibson, Brad K.; Ferrarese, Laura; Kelson, Daniel D.; Sakai, Shoko; Mould, Jeremy R.; Kennicutt, Jr., Robert C.; Ford, Holland C.; Graham, John A.; Huchra, John P.; Hughes, Shaun M. G.; Illingworth, Garth D.; Macri, Lucas M.; Stetson, Peter B. (2001). "Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant". The Astrophysical Journal 553: 47–72.  
  4. ^ a b c d Tammann, G. A.; Sandage, A.; Reindl, B. (2008). "The expansion field: the value of H 0". The Astronomy and Astrophysics Review 15 (4): 289–331.  
  5. ^ a b c Majaess, D. J.; Turner, D. G.; Lane, D. J. (2009). "Characteristics of the Galaxy according to Cepheids". Monthly Notices of the Royal Astronomical Society 398: 263–270.  
  6. ^ a b c d Freedman, Wendy L.; Madore, Barry F. (2010). "The Hubble Constant". Annual Review of Astronomy and Astrophysics 48: 673.  
  7. ^ "VISTA Discovers New Component of Milky Way". Retrieved 29 October 2015. 
  8. ^ Turner, David G. (1996). "The Progenitors of Classical Cepheid Variables". Journal of the Royal Astronomical Society of Canada 90: 82.  
  9. ^ a b Turner, David G. (2010). "The PL calibration for Milky Way Cepheids and its implications for the distance scale". Astrophysics and Space Science 326 (2): 219–231.  
  10. ^ Rodgers, A. W. (1957). "Radius variation and population type of cepheid variables".  
  11. ^ a b c Ngeow, C.; Kanbur, S. M. (2006). "The Hubble Constant from Type Ia Supernovae Calibrated with the Linear and Nonlinear Cepheid Period-Luminosity Relations". The Astrophysical Journal 642: L29–L32.  
  12. ^ a b c Macri, Lucas M.; Riess, Adam G.; Guzik, Joyce Ann; Bradley, Paul A. (2009). "The SH0ES Project: Observations of Cepheids in NGC 4258 and Type Ia SN Hosts". AIP Conference Proceedings. STELLAR PULSATION: CHALLENGES FOR THEORY AND OBSERVATION: Proceedings of the International Conference. AIP Conference Proceedings 1170: 23–25.  
  13. ^ a b c Wallerstein, George (2002). "The Cepheids of Population II and Related Stars". Publications of the Astronomical Society of the Pacific 114 (797): 689–699.  
  14. ^ a b Soszyński, I.; Udalski, A.; Szymański, M. K.; Kubiak, M.; Pietrzyński, G.; Wyrzykowski, Ł.; Szewczyk, O.; Ulaczyk, K.; Poleski, R. (2008). "The Optical Gravitational Lensing Experiment. The OGLE-III Catalog of Variable Stars. II.Type II Cepheids and Anomalous Cepheids in the Large Magellanic Cloud". Acta Astronomica 58: 293.  
  15. ^ Kubiak, M.; Udalski, A. (2003). "The Optical Gravitational Lensing Experiment. Population II Cepheids in the Galactic Bulge". Acta Astronomica 53: 117.  
  16. ^ Matsunaga, Noriyuki; Fukushi, Hinako; Nakada, Yoshikazu; Tanabé, Toshihiko; Feast, Michael W.; Menzies, John W.; Ita, Yoshifusa; Nishiyama, Shogo; et al. (2006). "The period-luminosity relation for type II Cepheids in globular clusters". Monthly Notices of the Royal Astronomical Society 370 (4): 1979–1990.  
  17. ^ Feast, Michael W.; Laney, Clifton D.; Kinman, Thomas D.; Van Leeuwen, Floor; Whitelock, Patricia A. (2008). "The luminosities and distance scales of type II Cepheid and RR Lyrae variables". Monthly Notices of the Royal Astronomical Society 386 (4): 2115–2134.  
  18. ^ a b Majaess, D.; Turner, D.; Lane, D. (2009). "Type II Cepheids as Extragalactic Distance Candles". Acta Astronomica 59: 403.  
  19. ^ Majaess, D. J. (2010). "RR Lyrae and Type II Cepheid Variables Adhere to a Common Distance Relation". The Journal of the American Association of Variable Star Observers 38: 100.  
  20. ^ Matsunaga, Noriyuki; Feast, Michael W.; Menzies, John W. (2009). "Period-luminosity relations for type II Cepheids and their application". Monthly Notices of the Royal Astronomical Society 397 (2): 933–942.  
  21. ^ Caputo, F.; Castellani, V.; Degl'Innocenti, S.; Fiorentino, G.; Marconi, M. (2004). "Bright metal-poor variables: Why Anomalous Cepheids?". Astronomy and Astrophysics 424 (3): 927.  
  22. ^ Soszyński, I.; Udalski, A.; Szymański, M. K.; Kubiak, M.; Pietrzyński, G.; Wyrzykowski, Ł.; Szewczyk, O.; Ulaczyk, K.; Poleski, R. (2008). "The Optical Gravitational Lensing Experiment. The OGLE-III Catalog of Variable Stars. II.Type II Cepheids and Anomalous Cepheids in the Large Magellanic Cloud". Acta Astronomica 58: 293.  
  23. ^ Leavitt, Henrietta S. (1908). "1777 variables in the Magellanic Clouds". Annals of Harvard College Observatory 60: 87.  
  24. ^ Leavitt, Henrietta S.; Pickering, Edward C. (1912). "Periods of 25 Variable Stars in the Small Magellanic Cloud". Harvard College Observatory Circular 173: 1.  
  25. ^ Hubble, E. P. (1925). "Cepheids in spiral nebulae". The Observatory 48: 139.  
  26. ^ Lemaître, G. (1927). "Un Univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques". Annales de la Société Scientifique de Bruxelles 47: 49.  
  27. ^ Baade, W. (1958). "Problems in the determination of the distance of galaxies". Astronomical Journal 63: 207.  
  28. ^ Shapley, Harlow. (1918). "No. 153. Studies based on the colors and magnitudes in stellar clusters. Eighth paper: The luminosities and distances of 139 Cepheid variables". Contributions from the Mount Wilson Observatory / Carnegie Institution of Washington 153: 1.  
  29. ^ Benedict, G. Fritz; McArthur, Barbara E.; Feast, Michael W.; Barnes, Thomas G.; Harrison, Thomas E.; Patterson, Richard J.; Menzies, John W.; Bean, Jacob L.; Freedman, Wendy L. (2007). "Hubble Space Telescope Fine Guidance Sensor Parallaxes of Galactic Cepheid Variable Stars: Period-Luminosity Relations". The Astronomical Journal 133 (4): 1810.  
  30. ^ Stanek, K. Z.; Udalski, A. (1999). "The Optical Gravitational Lensing Experiment. Investigating the Influence of Blending on the Cepheid Distance Scale with Cepheids in the Large Magellanic Cloud". p. 9346.  
  31. ^ Udalski, A.; Wyrzykowski, L.; Pietrzynski, G.; Szewczyk, O.; Szymanski, M.; Kubiak, M.; Soszynski, I.; Zebrun, K. (2001). "The Optical Gravitational Lensing Experiment. Cepheids in the Galaxy IC1613: No Dependence of the Period-Luminosity Relation on Metallicity". Acta Astronomica 51: 221.  
  32. ^ Macri, L. M.; Stanek, K. Z.; Bersier, D.; Greenhill, L. J.; Reid, M. J. (2006). "A New Cepheid Distance to the Maser‐Host Galaxy NGC 4258 and Its Implications for the Hubble Constant". The Astrophysical Journal 652 (2): 1133–1149.  
  33. ^ Bono, G.; Caputo, F.; Fiorentino, G.; Marconi, M.; Musella, I. (2008). "Cepheids in External Galaxies. I. The Maser‐Host Galaxy NGC 4258 and the Metallicity Dependence of Period‐Luminosity and Period‐Wesenheit Relations". The Astrophysical Journal 684: 102–117.  
  34. ^ Madore, Barry F.; Freedman, Wendy L. (2009). "Concerning the Slope of the Cepheid Period-Luminosity Relation". The Astrophysical Journal 696 (2): 1498–1501.  
  35. ^ Scowcroft, V.; Bersier, D.; Mould, J. R.; Wood, P. R. (2009). "The effect of metallicity on Cepheid magnitudes and the distance to M33". Monthly Notices of the Royal Astronomical Society 396 (3): 1287–1296.  
  36. ^ Majaess, D. (2010). "The Cepheids of Centaurus A (NGC 5128) and Implications for H0". Acta Astronomica 60: 121.  
  37. ^ De Zeeuw, P. T.; Hoogerwerf, R.; De Bruijne, J. H. J.; Brown, A. G. A.; Blaauw, A. (1999). "A HIPPARCOS Census of the Nearby OB Associations". The Astronomical Journal 117: 354.  
  38. ^ Majaess, D.; Turner, D.; Gieren, W. (2012). "New Evidence Supporting Cluster Membership for the Keystone Calibrator Delta Cephei". The Astrophysical Journal 747 (2): 145.  
  39. ^ Benedict, G. Fritz; McArthur, B. E.; Fredrick, L. W.; Harrison, T. E.; Slesnick, C. L.; Rhee, J.; Patterson, R. J.; Skrutskie, M. F.; Franz, O. G.; Wasserman, L. H.; Jefferys, W. H.; Nelan, E.; Van Altena, W.; Shelus, P. J.; Hemenway, P. D.; Duncombe, R. L.; Story, D.; Whipple, A. L.; Bradley, A. J. (2002). "Astrometry with the Hubble Space Telescope: A Parallax of the Fundamental Distance Calibrator δ Cephei". The Astronomical Journal 124 (3): 1695.  
  40. ^ Riess, Adam G.; Casertano, Stefano; Anderson, Jay; MacKenty, John; Filippenko, Alexei V. (2014). "Parallax beyond a Kiloparsec from Spatially Scanning the Wide Field Camera 3 on the Hubble Space Telescope". The Astrophysical Journal 785 (2): 161.  
  41. ^ Smith, D. H. (1984). "Eddington's Valve and Cepheid Pulsations". Sky and Telescope 68: 519.  
  42. ^ Eddington, A. S. (1917). "The pulsation theory of Cepheid variables". The Observatory 40: 290.  
  43. ^ Zhevakin, S. A., "К Теории Цефеид. I", Астрономический журнал, 30 161–179 (1953)



The mechanics of the pulsation as a heat-engine was proposed in 1917 by Arthur Stanley Eddington[42] (who wrote at length on the dynamics of Cepheids), but it was not until 1953 that S. A. Zhevakin identified ionized helium[43] as a likely valve for the engine.

The accepted explanation for the pulsation of Cepheids is called the Eddington valve,[41] or κ-mechanism, where the Greek letter κ (kappa) denotes gas opacity. Helium is the gas thought to be most active in the process. Doubly ionized helium (helium whose atoms are missing both electrons) is more opaque than singly ionized helium. The more helium is heated, the more ionized it becomes. At the dimmest part of a Cepheid's cycle, the ionized gas in the outer layers of the star is opaque, and so is heated by the star's radiation, and due to the increased temperature, begins to expand. As it expands, it cools, and so becomes less ionized and therefore more transparent, allowing the radiation to escape. Then the expansion stops, and reverses due to the star's gravitational attraction. The process then repeats.

Dynamics of the pulsation

Delta Cephei is also of particular importance as a calibrator of the Cepheid period-luminosity relation since its distance is among the most precisely established for a Cepheid, thanks in part to its membership in a star cluster[37][38] and the availability of precise Hubble Space Telescope/Hipparcos parallaxes.[39] The accuracy of the distance measurements to Cepheid variables and other bodies within 7,500 lightyears is vastly improved by combining images from Hubble taken six months apart when the Earth and Hubble are on opposite sides of the Sun.[40]

These unresolved matters have resulted in cited values for the Hubble constant (established from Classical Cepheids) ranging between 60 km/s/Mpc and 80 km/s/Mpc.[3][4][6][11][12] Resolving this discrepancy is one of the foremost problems in astronomy since the cosmological parameters of the Universe may be constrained by supplying a precise value of the Hubble constant.[6][12] Uncertainties have diminished over the years, due in part to discoveries such as RS Puppis.

Chief among the uncertainties tied to the classical and type II Cepheid distance scale are: the nature of the period-luminosity relation in various passbands, the impact of metallicity on both the zero-point and slope of those relations, and the effects of photometric contamination (blending) and a changing (typically unknown) extinction law on Cepheid distances. All these topics are actively debated in the literature.[4][9][11][18][29][30][31][32][33][34][35][36]

Uncertainties in Cepheid determined distances

In the mid 20th century, significant problems with the astronomical distance scale were resolved by dividing the Cepheids into different classes with very different properties. In the 1940s, Walter Baade recognized two separate populations of Cepheids (classical and type II). Classical Cepheids are younger and more massive population I stars, whereas type II Cepheids are older fainter Population II stars.[13] Classical Cepheids and type II Cepheids follow different period-luminosity relationships. The luminosity of type II Cepheids is, on average, less than classical Cepheids by about 1.5 magnitudes (but still brighter than RR Lyrae stars). Baade's seminal discovery led to a fourfold increase in the distance to M31, and the extragalactic distance scale.[27] RR Lyrae stars, then known as Cluster Variables, were recognized fairly early as being a separate class of variable, due in part to their short periods.[28]


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.