World Library  
Flag as Inappropriate
Email this Article

Gödel Prize

The Gödel Prize is an annual prize for outstanding papers in the area of theoretical computer science, given jointly by European Association for Theoretical Computer Science (EATCS) and the Association for Computing Machinery Special Interest Group on Algorithms and Computational Theory (ACM SIGACT). The award is named in honor of Kurt Gödel. Gödel's connection to theoretical computer science is that he was the first to mention the "P versus NP" question, in a 1956 letter to John von Neumann in which Gödel asked whether a certain NP-complete problem could be solved in quadratic or linear time.

The Gödel Prize has been awarded since 1993. The prize is awarded either at STOC (ACM Symposium on Theory of Computing, one of the main North American conferences in theoretical computer science) or ICALP (International Colloquium on Automata, Languages and Programming, one of the main European conferences in the field). To be eligible for the prize, a paper must be published in a refereed journal within the last 14 (formerly 7) years.

The winner of the Prize is selected by a committee of six members. The EATCS President and the SIGACT Chair each appoint three members to the committee, to serve staggered three-year terms. The committee is chaired alternately by representatives of EATCS and SIGACT.


Year Name(s) Notes Publication year
1993 László Babai, Shafi Goldwasser, Silvio Micali, Shlomo Moran, and Charles Rackoff for the development of interactive proof systems 1988,[paper 1] 1989[paper 2]
1994 Johan Håstad for an exponential lower bound on the size of constant-depth Boolean circuits (for the parity function). 1989[paper 3]
1995 Neil Immerman and Róbert Szelepcsényi for the Immerman–Szelepcsényi theorem regarding nondeterministic space complexity 1988,[paper 4] 1988[paper 5]
1996 Mark Jerrum and Alistair Sinclair for work on Markov chains and the approximation of the permanent of a matrix 1989,[paper 6] 1989[paper 7]
1997 Joseph Halpern and Yoram Moses for defining a formal notion of "knowledge" in distributed environments 1990[paper 8]
1998 Seinosuke Toda for Toda's theorem which showed a connection between counting solutions (PP) and alternation of quantifiers (PH) 1991[paper 9]
1999 Peter Shor for Shor's algorithm for factoring numbers in polynomial time on a quantum computer 1997[paper 10]
2000 Moshe Y. Vardi and Pierre Wolper for work on temporal logic with finite automata 1994[paper 11]
2001 Sanjeev Arora, Uriel Feige, Shafi Goldwasser, Carsten Lund, László Lovász, Rajeev Motwani, Shmuel Safra, Madhu Sudan, and Mario Szegedy for the PCP theorem and its applications to hardness of approximation 1996,[paper 12] 1998,[paper 13] 1998[paper 14]
2002 Géraud Sénizergues for proving that equivalence of deterministic pushdown automata is decidable 2001[paper 15]
2003 Yoav Freund and Robert Schapire for the AdaBoost algorithm in machine learning 1997[paper 16]
2004 Maurice Herlihy, Michael Saks, Nir Shavit and Fotios Zaharoglou for applications of topology to the theory of distributed computing 1999,[paper 17] 2000[paper 18]
2005 Noga Alon, Yossi Matias and Mario Szegedy for their foundational contribution to streaming algorithms 1999[paper 19]
2006 Manindra Agrawal, Neeraj Kayal, Nitin Saxena for the AKS primality test 2004[paper 20]
2007 Alexander Razborov, Steven Rudich for natural proofs 1997[paper 21]
2008 Daniel Spielman, Shanghua Teng for smoothed analysis of algorithms 2004[paper 22]
2009 Omer Reingold, Salil Vadhan, Avi Wigderson for zig-zag product of graphs and undirected connectivity in log space 2002,[paper 23] 2008[paper 24]
2010 Sanjeev Arora, Joseph S. B. Mitchell for their concurrent discovery of a polynomial-time approximation scheme (PTAS) for the Euclidean Travelling Salesman Problem (ETSP) 1998,[paper 25] 1999[paper 26]
2011 Johan Håstad for proving optimal inapproximability result for various combinatorial problems 2001[paper 27]
2012 Elias Koutsoupias, Christos Papadimitriou, Noam Nisan, Amir Ronen, Tim Roughgarden and Éva Tardos for laying the foundations of algorithmic game theory[1] 2009,[paper 28] 2002,[paper 29] 2001[paper 30]
2013 Dan Boneh, Matthew K. Franklin, and Antoine Joux for multi-party Diffie–Hellman key exchange and the Boneh–Franklin scheme in cryptography[2] 2003,[paper 31] 2004[paper 32]
2014 Ronald Fagin, Amnon Lotem, and Moni Naor for Optimal Aggregation Algorithms for Middleware[3] 2003,[paper 33]
2015 Daniel Spielman, Shanghua Teng for their series of papers on nearly-linear-time Laplacian solvers[4] 2011[paper 34] 2013[paper 35] 2014[paper 36]

Winning papers

  1. ^ Babai, László; Moran, Shlomo (1988), "Arthur-Merlin games: a randomized proof system, and a hierarchy of complexity class" (PDF),  
  2. ^ Goldwasser, S.; Micali, S.; Rackoff, C. (1989), "The knowledge complexity of interactive proof systems" (PDF),  
  3. ^ Håstad, Johan (1989), "Almost Optimal Lower Bounds for Small Depth Circuits", in Micali, Silvio, Randomness and Computation (PDF), Advances in Computing Research 5, JAI Press, pp. 6–20,  
  4. ^  
  5. ^ Szelepcsényi, R. (1988), "The method of forced enumeration for nondeterministic automata",  
  6. ^ Sinclair, A.; Jerrum, M. (1989), "Approximate counting, uniform generation and rapidly mixing Markov chains",  
  7. ^ Jerrum, M.; Sinclair, Alistair (1989), "Approximating the permanent",  
  8. ^  
  9. ^ Toda, Seinosuke (1991), "PP is as hard as the polynomial-time hierarchy" (PDF),  
  10. ^ Shor, Peter W. (1997), "Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer" (PDF),  
  11. ^ Vardi, Moshe Y.; Wolper, Pierre (1994), "Reasoning about infinite computations" (PDF), Information and Computation (Boston, MA:  
  12. ^ Feige, Uriel; Goldwasser, Shafi; Lovász, Laszlo; Safra, Shmuel; Szegedy, Mario (1996), "Interactive proofs and the hardness of approximating cliques" (PDF),  
  13. ^ Arora, Sanjeev; Safra, Shmuel (1998), "Probabilistic checking of proofs: a new characterization of NP" (PDF),  
  14. ^ Arora, Sanjeev; Lund, Carsten; Motwani, Rajeev; Sudan, Madhu; Szegedy, Mario (1998), "Proof verification and the hardness of approximation problems" (PDF),  
  15. ^ Sénizergues, Géraud (2001), "L(A) = L(B)? decidability results from complete formal systems", Theor. Comput. Sci. (Essex, UK: Elsevier Science Publishers Ltd.) 251 (1): 1–166,  
  16. ^ Freund, Y.; Schapire, R.E. (1997), "A decision-theoretic generalization of on-line learning and an application to boosting" (PDF), Journal of Computer and System Sciences ( 
  17. ^  . Gödel prize lecture
  18. ^  
  19. ^  . First presented at the Symposium on Theory of Computing (STOC) in 1996.
  20. ^ Agrawal, M.; Kayal, N.; Saxena, N. (2004), "PRIMES is in P" (PDF),  
  21. ^ Razborov, Alexander A.; Rudich, Steven (1997), "Natural proofs",  
  22. ^ Spielman, Daniel A.;  
  23. ^ Reingold, Omer; Vadhan, Salil; Wigderson, Avi (2002), "Entropy waves, the zig-zag graph product, and new constant-degree expanders" (PDF),  
  24. ^ Reingold, Omer (2008), "Undirected connectivity in log-space", J. ACM (ACM) 55 (4): 1–24,  
  25. ^  
  26. ^  
  27. ^  
  28. ^ Koutsoupias, Elias; Papadimitriou, Christos (2009). "Worst-case equilibria". Computer Science Review 3 (2): 65–69.  
  29. ^ Roughgarden, Tim; Tardos, Éva (2002). "How bad is selfish routing?". Journal of the ACM 49 (2): 236–259.  
  30. ^ Nisan, Noam; Ronen, Amir (2001). "Algorithmic Mechanism Design". Games and Economic Behavior 35 (1-2): 166–196.  
  31. ^ Boneh, Dan; Franklin, Matthew (2003). "Identity-based encryption from the Weil pairing". SIAM Journal on Computing 32 (3): 586–615.  
  32. ^ Joux, Antoine (2004). "A one round protocol for tripartite Diffie-Hellman". Journal of Cryptology 17 (4): 263–276.  
  33. ^ Fagin, Ronald; Lotem, Amnon; Naor, Moni (2003). "Optimal aggregation algorithms for middleware". Journal of Computer and System Sciences 66 (4): 614–656.  
  34. ^ Spielman, Daniel A.; Teng, Shang-Hua (2011). "Spectral Sparsification of Graphs". SIAM Journal on Computing 40 (4): 981–1025.  
  35. ^ Spielman, Daniel A.; Teng, Shang-Hua (2013). "A Local Clustering Algorithm for Massive Graphs and Its Application to Nearly Linear Time Graph Partitioning". SIAM Journal on Computing 42 (1): 1–26.  
  36. ^ Spielman, Daniel A.; Teng, Shang-Hua (2014). "Nearly Linear Time Algorithms for Preconditioning and Solving Symmetric, Diagonally Dominant Linear Systems". SIAM Journal on Matrix Analysis and Applications 35 (3): 835–885.  


  • Prize website with list of winners
  1. ^ "Three Papers Cited for Laying Foundation of Growth in Algorithmic Game Theory". 16 May 2012. Retrieved 16 May 2012. 
  2. ^ ACM Group Presents Gödel Prize for Advances in Cryptography: Three Computer Scientists Cited for Innovations that Improve Security, Association for Computing Machinery, May 29, 2013.
  3. ^ Recipients Achieved Groundbreaking Results for Aggregating Data from Multiple Sources, Association for Computing Machinery, April 30, 2014.
  4. ^ [1]2015 Gödel Prize Association for Computing Machinery announcement.
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.