World Library  
Flag as Inappropriate
Email this Article

Hawaiian–Emperor seamount chain

Hawaiian-Emperor seamount chain
Hawaiian Islands
Mauna Kea, the range's highest point
Highest point
Peak Mauna Kea (Hawaii, United States)
Elevation 4,207 m (13,802 ft)
Length 5,800 km (3,600 mi) NE-SW
Elevation of the Pacific seafloor, showing the Hawaiian-Emperor seamount chain stretching northwest from the Hawaiian Islands
Country United States
State Hawaii
Orogeny Hawaii hotspot

The Hawaiian–Emperor seamount chain is a mostly undersea mountain range in the Pacific that reaches above sea level in Hawaii. It is composed of the Hawaiian ridge, consisting of the islands of the Hawaiian chain northwest to Kure Atoll, and the Emperor Seamounts: together they form a vast underwater mountain region of islands and intervening seamounts, atolls, shallows, banks and reefs along a line trending southeast to northwest beneath the northern Pacific Ocean. The seamount chain, containing over 80 identified undersea volcanoes, stretches over 5,800 kilometres (3,600 mi) from the Aleutian Trench in the far northwest Pacific to the Loʻihi seamount, the youngest volcano in the chain, which lies about 35 kilometres (22 mi) southeast of the Island of Hawaiʻi.


  • Regions 1
  • Formation 2
  • Aging 3
  • See also 4
  • Notes 5
  • References 6
  • Further reading 7


The Hawaiian-Emperor seamount chain, zoomed in on the current habitable islands

The chain can be divided into three subsections. The first, the Hawaiian archipelago (also known as the Windward isles), consists of the islands comprising the U.S. state of Hawaii. As it is the closest to the hotspot, this volcanically active region is the youngest part of the chain, with ages ranging from 400,000 years[1] to 5.1 million years.[2] The island of Hawaiʻi is composed of five volcanoes, of which three (Kilauea, Mauna Loa, and Hualalai) are still active. ʻihi Seamount continues to grow offshore, and is the only known volcano in the chain in the submarine pre-shield stage.[3]

The second part of the chain is composed of the Papahānaumokuākea Marine National Monument under the Antiquities Act of 1906. The national monument, meant to protect the biodiversity of the Hawaiian isles,[n 1] encompasses all of the northern isles, and is one of the largest such protected areas in the world. The proclamation limits tourism to the area, and calls for a phase-out of fishing by 2011.[5]

The oldest and most heavily eroded part of the chain are the Emperor seamounts, which are 39[6] to 85 million years in age.[7] The Emperor and Hawaiian chains form an angle of about 120°. This bend was long attributed to a relatively sudden change of 60° in the direction of plate motion, but research conducted in 2003 suggests that it was the movement of the hotspot itself that caused the bend.[8] The issue is still currently under debate.[9] All of the volcanoes in this part of the chain have long since subsided below sea level, becoming seamounts and guyots (see also the seamount and guyot stages of Hawaiian volcanism). Many of the volcanoes are named after former emperors of Japan. The seamount chain extends to the West Pacific, and terminates at the Kuril–Kamchatka Trench, a subduction zone at the border of Russia.[10]


The oldest age for the Emperor Seamounts is 81 million years, and comes from Detroit Seamount. However, Meiji Guyot, located to the north of Detroit Seamount, is likely somewhat older.

In 1963, geologist John Tuzo Wilson hypothesized the origins of the Hawaiian–Emperor seamount chain, explaining that they were created by a hotspot of volcanic activity that was essentially stationary as the Pacific tectonic plate drifted in a northwesterly direction, leaving a trail of increasingly eroded volcanic islands and seamounts in its wake. An otherwise inexplicable kink in the chain marks a shift in the movement of the Pacific plate some 47 million years ago, from a northward to a more northwesterly direction, and the kink has been presented in geology texts as an example of how a tectonic plate can shift direction comparatively suddenly. A look at the USGS map on the origin of the Hawaiian Islands[11] clearly shows this "spearpoint".

In a more recent study, Sharp and Clague (2006) interpret the bend as starting at about 50 million years ago. They also conclude that the bend formed from a "traditional" cause—a change in the direction of motion of the Pacific plate.

However, recent research shows that the hotspot itself may have moved with time. Some evidence comes from analysis of the orientation of the ancient magnetic field preserved by magnetite in ancient lava flows sampled at four seamounts (Tarduno et al., 2003): this evidence from paleomagnetism shows a more complex history than the commonly accepted view of a stationary hotspot. If the hotspot had remained above a fixed mantle plume during the past 80 million years, the latitude as recorded by the orientation of the ancient magnetic field preserved by magnetite (paleolatitude) should be constant for each sample; this should also signify original cooling at the same latitude as the current location of the Hawaiian hotspot. Instead of remaining constant, the paleolatitudes of the Emperor Seamounts show a change from north to south, with decreasing age. The paleomagnetic data from the seamounts of the Emperor chain suggest motion of the Hawaiian hotspot in Earth's mantle. Tarduno et al. (2009) have summarized evidence that the bend in the seamount chain may be caused by circulation patterns in the flowing solid mantle (mantle "wind") rather than a change in plate motion.


The chain has been produced by the movement of the ocean crust over the Hawaiʻi hotspot, an upwelling of hot rock from the Earth's mantle. As the oceanic crust moves the volcanoes farther away from their source of magma, their eruptions become less frequent and less powerful until they eventually cease to erupt altogether. At that point erosion of the volcano and subsidence of the seafloor cause the volcano to gradually diminish. As the volcano sinks and erodes, it first becomes an atoll island and then an atoll. Further subsidence causes the volcano to sink below the sea surface, becoming a seamount and/or a guyot.[3]

See also


  1. ^ All of the islands in this part of the chain are administrated by Hawaii state, save for Midway Atoll, which is administrated by the U.S. Fish and Wildlife Service.


  1. ^ Pre-press version
  2. ^ a b
  3. ^ a b
  4. ^
  5. ^
  6. ^
  7. ^
  8. ^
  9. ^ Sharp et al., 2006, Initiation of the bend near Kimmei seamount about 50 million years ago (MA) was coincident with realignment of Pacific spreading centers and early magmatism in western Pacific arcs, consistent with formation of the bend by changed Pacific plate motion.
  10. ^
  11. ^

Further reading

  • Ken Rubin, "The Formation of the Hawaiian Islands"
  • USGS, "The long trail of the Hawaiian hotspot"
  • National Geographic News: John Roach, "Hot Spot That Spawned Hawaii Was on the Move, Study Finds": August 14, 2003
  • Evolution of Hawaiian Volcanoes from the USGS.
  • The Formation of the Hawaiian Islands with tables and diagrams illustrating the progressive age of the volcanoes.
  • Hot Spots and Mantle Plumes

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.