World Library  
Flag as Inappropriate
Email this Article

Chemical library

Article Id: WHEBN0010257708
Reproduction Date:

Title: Chemical library  
Author: World Heritage Encyclopedia
Language: English
Subject: Compound management, Reverse pharmacology, Combinatorial chemistry, Drug discovery, PRO/II
Collection: Bioinformatics, Cheminformatics, Chemistry, Drug Discovery
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Chemical library

A chemical library or compound library is a collection of stored chemicals usually used ultimately in high-throughput screening or industrial manufacture. The chemical library can consist in simple terms of a series of stored chemicals. Each chemical has associated information stored in some kind of database with information such as the chemical structure, purity, quantity, and physiochemical characteristics of the compound.

Contents

  • Purpose 1
  • Generation of chemical libraries 2
  • Design and optimization of chemical libraries 3
  • Storage and management 4
  • See also 5
  • Further reading 6
  • References 7

Purpose

In drug discovery high-throughput screening, it is desirable to screen a drug target against a selection of chemicals that try to take advantage of as much of the appropriate chemical space as possible. The chemical space of all possible chemical structures is extraordinarily large. Most stored chemical libraries do not typically have a fully represented or sampled chemical space mostly because of storage and cost concerns. However, since many molecular interactions cannot be predicted, the wider the chemical space that is sampled by the chemical library, the better the chance that high-throughput screening will find a "hit"—a chemical with an appropriate interaction in a biological model that might be developed into a drug.

An example of a chemical library in drug discovery would be a series of chemicals known to inhibit kinases, or in industrial processes, a series of catalysts known to polymerize resins.

Generation of chemical libraries

Chemical libraries are usually generated for a specific goals and larger chemical libraries could be made of several groups of smaller libraries stored in the same location. In the kinase inhibitors in cancer may limit their chemical libraries and synthesis to just those types of chemicals known to have affinity for ATP binding sites or allosteric sites.

Generally, however, most chemical libraries focus on large groups of varied molecular scaffold or molecular backbone. Sometimes chemicals can be purchased from outside vendors as well and included into an internal chemical library.

Depending upon their scope and design, chemical libraries can also be classified as diverse oriented, Drug-like, Lead-like, peptide-mimetic, Natural Product-like,[1] Targeted against a specific family of biological targets such Kinases, GPCRs, Proteases, PPI etc. Among the compound libraries should be annotated the Fragment Compound Libraries, which are mainly used for Fragment Based Drug Discovery FBDD.

Design and optimization of chemical libraries

Chemical libraries are usually designed by chemists and medicinal chemistry. The method of chemical library generation usually depends on the project and there are many factors to consider when using rational methods to select screening compounds.[2] Typically, a range of chemicals is screened against a particular drug target or disease model, and the preliminary "hits", or chemicals that show the desired activity, are re-screened to verify their activity. Once they are qualified as a "hit" by their repeatability and activity, these particular chemicals are registered and analysed. Commonalities among the different chemical groups are studied as they are often reflective of a particular chemical subspace. Additional chemistry work may be needed to further optimize the chemical library in the active portion of the subspace. When it is needed, more synthesis is completed to extend out the chemical library in that particular subspace by generating more compounds that are very similar to the original hits. This new selection of compounds within this narrow range are further screened and then taken on to more sophisticated models for further validation in the Drug Discovery Hit to Lead process.

Storage and management

The "chemical space" of all possible organic chemicals is large and increases exponentially with the size of the molecule. Most chemical libraries do not typically have a fully represented chemical space mostly because of storage and cost concerns.

Because of the expense and effort involved in chemical synthesis, the chemicals must be correctly stored and banked away for later use to prevent early degradation. Each chemical has a particular shelf life and storage requirement and in a good-sized chemical library, there is a timetable by which library chemicals are disposed of and replaced on a regular basis. Some chemicals are fairly unstable, radioactive, volatile or flammable and must be stored under careful conditions in accordance with safety standards such as OSHA.

Most chemical libraries are managed with information technologies such as barcoding and relational databases. Additionally, robotics are necessary to fetch compounds in larger chemical libraries.

Because a chemical library's individual entries can easily reach up into the millions of compounds, the management of even modest-sized chemical libraries can be a full-time endeavor. Compound management is one such field that attempts to manage and upkeep these chemical libraries as well as maximizing safety and effectiveness in their management.

See also

Further reading

  • Ian Yates. Compound Management comes of age. Drug Discovery World Spring 2003 p35-43
  • Archer JR. History, evolution, and trends in compound management for high-throughput screening. Assay Drug Dev Technol. 2004 Dec;2(6):675-81
  • Casey R. Designing Chemical Compound Libraries for Drug Discovery. Business Intelligence Network December 1, 2005.
  • GLARE - A free open source software for combinatorial library design.
  • Examples of Chemical libraries for Drug Discovery

References

  1. ^ http://www.genengnews.com/gen-articles/natural-products-inform-library-design/3154/
  2. ^ Huggins DJ, Venkitaraman AR, Spring DR (January 2011). "Rational Methods for the Selection of Diverse Screening Compounds". ACS Chem. Biol. 6 (3): 208–217.  
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.